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Abstract. Prescribed burning is a management tool used to reduce fuel loads in western interior forests. Following
a burn, managers need the ability to predict the mortality of individual trees based on easily observed characteristics.
A study was established in six stands of mixed-age ponderosa pine (Pinus ponderosa Dougl. ex Laws.) with scattered
western junipers at the south end of the Blue Mountains near Burns, Oregon, USA. Stands were thinned in either
1994 or 1995. Three treatments, a fall burn, a spring burn, and an unburned control, were randomly assigned to
12-ha experimental units within each stand. Prescribed burns occurred during mid-October of 1997 or mid-June
of 1998 and were representative of operational burns, given weather and fuel conditions. Within each experimental
unit, six 0.2-ha plots were established to evaluate responses to the burns. Ponderosa pine plot trees (n = 3415)
alive 1 month after the burns were evaluated and observed for four growing seasons. Nine fire damage and tree
morphological variables were evaluated by logistic regression. A five-factor full model and a two-factor reduced
model are presented for projecting probability of mortality. Significant variables in the full model included measures
of crown, bole, and basal damage.
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Introduction

Prescribed burning is currently being used as a management
tool to reduce fuel loads and to restore ecosystem function in
western interior forests of the USA. Following a prescribed
fire, one measure of the fire is the immediate and predicted
delayed mortality of trees in the treated unit. Managers evalu-
ate this mortality in order to determine the success of burning
prescriptions to achieve such management objectives as post-
fire stocking levels, to improve future prescriptions, and to
better plan additional activities (e.g. planting). Post-fire pre-
dictions need to be based on easily observable morphological
and burn-damage characteristics.

Significant effort has gone into developing tools to predict
mortality of fire-damaged ponderosa pine. Comprehensive
literature reviews of fire-caused mortality (McHugh 2001)
and of methods to predict mortality (Fowler and Sieg 2004)
of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) in
western USA are available. Discriminant analysis and logis-
tic regression have been used to select variables and develop
models that predict fire-induced ponderosa pine mortality

based on easily observable tree damage. Three studies report
discriminant analysis models predicting fire-caused mortality
of ponderosa pine from prescribed fire (Wyant and Zimmer-
man 1983;Wyant et al. 1986; Swezy andAgee 1991). Logistic
regression models specifically for predicting ponderosa pine
mortality following fire are reported from seven studies: four
with data from prescribed fire (Harrington and Hawksworth
1990; Saveland et al. 1990; Harrington 1993; Stephens and
Finney 2002), two with data from wildfires (Regelbrugge and
Conard 1993; Finney 1999), and one with data from a com-
bination of wildfire and prescribed fire (McHugh and Kolb
2003). Ryan and Reinhardt (1988) used data from 43 pre-
scribed fires and seven western conifer species (not including
ponderosa pine) to develop a logistic regression model that
may have broad application geographically and in mixed-
conifer stands. There is general agreement that tree size, bole
scorch, and crown damage are useful descriptors to predict
delayed post-fire mortality of trees. Although the effect of
season of prescribed burn has received ample speculation,
few studies have focused on this. Harrington (1987, 1993)
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Table 1. Pre- and post-burn means of stand and tree size characteristics
Data collected fall 1998. dbh, diameter at breast height; NA, not applicable

Treatment dbh (cm) Tree height (m) Trees per ha Basal area (m2/ha) Experimental unit

Pre Post Pre Post Pre Post Pre Post Area (ha) Burned (%) Slope (%)

Control 28.4 28.5 14.0 14.0 226 224 17.9 17.8 9.4 NA 14
Fall 26.3 28.8 13.8 14.5 264 179 18.8 14.4 15.1 56 18
Spring 27.4 28.3 13.9 14.2 246 218 18.4 17.6 15.1 57 14

specifically tested the impact of season of burn on ponderosa
pine mortality in a replicated experiment in Colorado. He
reported higher mortality with spring (active season) burns
than with fall (dormant season) burns. In contrast, Thies
et al. (2005) examined the effect of season of prescribed burn
on ponderosa pine mortality in Oregon and reported higher
mortality with fall burns than with spring burns.

The present paper reports on the development of logistic
regression models to predict delayed mortality of individual
ponderosa pines based on post-fire observations. Data were
collected from six ponderosa pine stands in eastern Oregon
that were observed for four growing seasons following pre-
scribed burning. To observe the full range of operational
burns in these stands, study treatments included spring and
fall burns and an unburned control. The explanatory vari-
ables represented tree morphology, fire damage, and season
of burn.

Methods and materials

Experimental design and sampling

The study was established in six stands of mixed-age
ponderosa pine with scattered western junipers (Juniperus
occidentalis Hook.) and mountain-mahogany (Cercocarpus
ledifolius Nutt.) at the south end of the Blue Mountains (Emi-
grant Creek Ranger District, Malheur National Forest) near
Burns, Oregon, USA. Each stand was thinned from below in
either 1994 or 1995, and burns were prescribed to reduce
untreated thinning slash, reduce over-stocking of saplings
in some areas, stimulate low levels of natural regeneration
where little existed, create snags, reinvigorate shrubs and
herbaceous plants, and reintroduce fire into ecosystems with
a history of frequent fire. Additional details are available
regarding site, stand structure, and the burn treatments (Thies
et al. 2005) and understory vegetation (Kerns et al. 2006).

Each stand was designated as a replicate and divided
into three contiguous experimental units similar in type,
aspect, and slope. Three treatments, no-burn, fall burn, and
spring burn, were randomly assigned to experimental units
within each replicate. Experimental units were burned dur-
ing mid-October of 1997 (fall burn) or mid-June of 1998
(spring burn). Thus, at each examination, all 18 exper-
imental units had developed without further disturbance
for the same number of growing seasons. All burns were

carried out within the burn prescription and were rep-
resentative of operational burns, given weather and fuel
conditions.

Because of the uncertain availability of appropriate con-
ditions for prescribed burns, plot establishment and data
collection were not begun until after the burns were com-
pleted. Within each experimental unit, six 0.2-ha circular
sampling plots were established post fire, at least 100 m apart
and in locations representative of the average stand and burn
conditions in the experimental unit. Areas having few pon-
derosa pines, such as a rock outcropping or a thicket of
mountain-mahogany, were avoided. On each plot, all standing
conifers (excepting junipers) greater than 7.5 cm diameter at
breast height (dbh) were tagged. Some stand and experimen-
tal unit characteristics are summarized in Table 1; additional
detail can be found in Thies et al. (2005).

Each tree alive at the time of the burns was classified in
July 1998 (1 month after the spring burn) as either alive (if
the tree had some green needles) or dead (if all needles were
either consumed or scorched). Scorched needles are those
discolored owing to heat from the fire. Trees dead pre-burn
were recognized by bark condition, presence of decay, and
lack of needles and fine twigs.Trees killed outright by the fire
were called immediate mortality. Trees that died (likely as a
result of the fire) after July 1998 were called delayed mortal-
ity. Experimental units were evaluated for delayed mortality
in the falls of 1998, 1999, 2000, and 2001. By fall 2001,
annual mortality on burned and unburned units was similar
(Thies et al. 2005). Only those trees alive in July 1998 were
evaluated for burn damage and used to develop models for
probability of delayed mortality for individual trees.

Data collection

Data were collected on tree crowns, stems, and tree quadrants
in fall 1998. The variables, measures of tree morphology,
and fire damage are from data collected in fall 1998 and are
shown in italics throughout the text. Variables analyzed in the
present paper are listed in Table 2. Three criteria governed
variable selection: (1) each variable provided a measure of
fire damage or tree quality known or expected to influence
post-fire mortality; (2) each variable was quickly and pre-
cisely measurable with non-destructive sampling procedures;
and (3) variables measured were readily observable soon
after fire.
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Table 2. Variables analyzed with their means and standard errors
(s.e.) for trees in the prescribed burn areas classed as survivors or

as delayed mortality through fall 2001

Variable Surviving trees Delayed mortality
(n = 2865) (n = 550)

Mean s.e. Mean s.e

Morphological variables
Diameter at breast height (cm) 28.61 0.28 22.98 0.49
Tree height (m) 14.40 0.12 13.01 0.22
Live crown proportion 0.58 0.01 0.54 0.01

Damage variables
Needle scorch proportion 0.18 0.01 0.73 0.02
Bud kill proportion 0.06 0.01 0.54 0.02
Ground char severe (0–4) 1.72 0.03 2.81 0.07
Basal char severe (0–4) 0.52 0.02 1.39 0.06
Basal char minimum (0–4) 1.11 0.01 1.76 0.03
Bole scorch proportion 0.11 0.01 0.30 0.01

Tree diameters

Diameter at breast height (dbh) is the tree diameter mea-
sured to the nearest 0.25 cm on the uphill side of the tree at
1.37 m above mineral soil.

Crowns

Each crown, post fire, may exhibit some or all of the
following three layers depending on the amount of heat dam-
age, from top to bottom: green (alive, undamaged); scorched
needles but buds alive; and killed needles and buds. Imme-
diately post fire, crowns that are alive but damaged show
two layers: an upper green layer and a lower brown layer
of scorched or consumed needles. By the end of the first
growing season post fire, the scorched zone may differenti-
ate into two zones: an upper layer where needles but not buds
were killed and the buds flushed and green needles started to
grow (regreen), and a lower layer that remained brown where
both needles and buds were killed. Damage layers often were
asymmetrical. Their height was taken as the average height
for that layer measured at the bole. Heights were measured to
the nearest 3.0 cm with a laser range finder with inclinometer,
in descending order:

• Tree height – height measured to the tip, trees with broken
or damaged tops were not measured;

• Live crown base post fire – lower limit of green crown
immediately post fire (also defined as the upper limit of
needle scorch);

• Live crown regreen – lower limit of live crown as seen at
the end of the first growing season; and

• Crown base pre-fire – lower height of live crown (whorl of
three or more live branches) as it existed pre-fire.

Three crown variables are proportions of the crown and are
derived from the four measurements given above. Live crown
proportion is the crown length pre-fire as a proportion of the
tree height, a common measure of tree vigor. Needle scorch

proportion is the proportion of damaged crown length based
on scorched needles.This measure of crown damage has been
used by others (Herman 1954; Wyant and Zimmerman 1983;
Wyant et al. 1986; Harrington 1987, 1993; Harrington and
Hawksworth 1990) and allowed reproducible results with a
minimum of training of field crews. Bud kill proportion is
the proportion of crown length wherein the temperature was
high enough to kill all buds on the branches. Needles do not
reappear (regreen) on these branches and the branches are
considered dead. The crown variables were calculated from
the following equations:

Live crown proportion = (tree height − crown base

pre-fire)/tree height,

Needle scorch proportion = (crown base post fire

− crown base pre-fire)/

(tree height − crown

base pre-fire),

Bud kill proportion = (live crown regreen

− crown base pre-fire)/

(tree height − crown

base pre-fire).

Quadrant

External indicators of fire-caused tree damage were
recorded as a non-destructive surrogate measure of damage
to the cambium, conducting tissues, or roots. The cambium
was not sampled or exposed. Data were collected for each
quadrant of a tree. Because the uphill side of a tree often gets
hotter, quadrants were established and defined in relation to
the ground slope: uphill, downhill, right or left (as viewed
from the downhill side) of the tree. Because char and con-
sumption of bark and duff during fire is often asymmetrical,
each quadrant was evaluated, the values recorded and, in some
cases, aggregated to provide a value for the tree:

• Ground char – most complete consumption of the litter and
duff observed in that quadrant as seen 15 cm from the tree
(burn classes modified from Ryan 1983): 0 = unburned,
no visible effect to the organic layer; 1 = light, litter and
duff layers are scorched or charred but duff is not signifi-
cantly altered; 2 = moderate, litter is completely consumed
and the duff is deeply charred; 3 = consumed, duff is com-
pletely consumed, ash only can be seen but the mineral
soil surface is not altered; and 4 = deep, litter and duff are
completely consumed and the structure and color of the
mineral soil surface are visibly altered;

• Basal char – most severe char class observed at the
duff-line in the quadrant (modified from Ryan 1983):
0 = none, no evidence of flame having contacted the bole
and no charring or darkening of bole; 1 = superficial, evi-
dence of light scorching that occurs around the fringe of
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more deeply charred bark; 2 = moderate, bark is uniformly
black with the possible exception of the inner depths of
prominent fissures, but bark character is still discernible;
3 = deep, bark is deeply charred, but not necessarily to the
wood, surface characteristics of the bark have been lost; and
4 = wood, bark is burned off with wood clearly showing;

• Bole scorch (height) – distance from mineral soil to the
highest point of bole blackening, measured to the nearest
15 cm with a height pole.

Derived variables were used to systematically establish
tree-level values for variables rated by quadrants:

• Ground char severe – number of quadrants with ground
char class of 3 or 4 (range 0–4); a ground char class of 3 or
4 was anticipated to generate adequate heat to kill surface
roots, and thus was a surrogate value for the proportion of
the tree circumference with the potential for killed surface
roots;

• Basal char severe – number of quadrants with basal char
class 3 or 4; we anticipated that heat adequate to cause
char of class 3 or 4 would kill the cambium, so this is a
surrogate for the proportion of the tree circumference with
killed cambium (range 0–4);

• Basal char minimum – the minimum char rating on any
quadrant on the tree; this variable will test if one quadrant
with little char predicts survival;

• Bole scorch maximum – the maximum bole scorch height
found on any of the four quadrants;

• Bole scorch proportion – maximum bole scorch height
as a proportion of total tree height (same as relative
scorch height in Regelbrugge and Conard 1993), cal-
culated with the formula bole scorch proportion = bole
scorch maximum/tree height.

To characterize litter and duff, the depth of the organic
material to mineral soil was measured on each of the six
unburned experimental units. The depth at each tree was
taken in the center of each quadrant, 15 cm from the tree
base. An additional 28 random points were measured at each
experimental unit.

Data analysis

Tree mortality represents a binary categorical response vari-
able. Trees alive in 1998 before the treatment burns were
applied were coded as alive (0) or dead (1) in 2001. Logistic
regression analysis was used to investigate how this categori-
cal response variable (mortality through 2001) was associated
with a set of explanatory variables. Logistic regression is the
appropriate statistical technique to model the probability of
an event such as a tree dying (McCullagh and Nelder 1991;
Ramsey and Schafer 1997; Hosmer and Lemeshow 2000).
Monserud (1976) contrasts this modeling form to other pre-
diction functions and recommends its use for analysis of
binary data. Several studies have used logistic regression

to model the effects of fire on ponderosa pine mortality
(Harrington and Hawksworth 1990; Saveland et al. 1990;
Harrington 1993; Regelbrugge and Conard 1993; Finney
1999; Stephens and Finney 2002; McHugh and Kolb 2003).
Other studies (Hamilton 1974, 1990; Ryan and Reinhardt
1988; Vanclay 1991; Avila and Burkhart 1992; van Mantgem
et al. 2003) have successfully used logistic regression to
model mortality of other tree species.

The response (dependent) variable in logistic regression
of binary data is the logit, the natural logarithm of the odds
ratio p/(1 − p), where p is the probability of a variable value
being in one of the two categories, alive or dead. The logit
transformation converts the probability of mortality into a
continuous variable that is linear with respect to the explana-
tory (independent) variables (McCullagh and Nelder 1991).
The logistic regression model is then represented as:

logit(p) = β0 + β1X1 + · · · + βiXi + Error,

where p equals the probability of tree mortality during the
period of observation, β0 is the intercept, β1 is the regression
coefficient for the first explanatory variable (X1) and βi is the
regression coefficient for the ith explanatory variable (Xi).

Two of the independent variables, season of burn and basal
char minimum, are categorical variables.These variables were
analyzed as a series of indicator variables to correctly evaluate
their importance in the model. An indicator variable indicates
group membership and is equal to 1 for an observation that
belongs to one particular category or is equal to 0 for an
observation that does not belong to that category. For every
k categories of an independent variable, k − 1 indicator vari-
ables must be constructed. Season of burn has two categories,
spring and fall, and needed only one indicator variable. Basal
char minimum can take on one of the five categories of basal
char. In our data, values for basal char were observed for
only four of the five possible categories, therefore only three
indicator variables were necessary for our analysis of this
independent variable.

Coefficients for logistic regression are usually estimated
by using the method of maximum likelihood, which optimizes
the probability that the values predicted by the set of model
coefficients match the observed data (McCullagh and Nelder
1991). To analyze clustered data where there are potential
correlations within clusters, generalized estimating equation
(GEE) procedures are used (Liang and Zeger 1986; Zeger and
Liang 1986; Hardin and Hilbe 2003). The GEE method was
developed for analysis of clustered data for which general-
ized linear models (GLM) are appropriate, that is, dependent,
non-normal data. GEE is an extension to the standard array
of GLM analytical techniques that incorporate a correlation
structure into the analysis (Liang and Zeger 1986; Zeger and
Liang 1986).The correlation structure is specified in the form
of a working correlation matrix.

The GEE method estimates model parameters by itera-
tively solving a system of equations based on quasi-likelihood
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distributional assumptions through a specific link function
and a variance that is a function of the mean (Hardin and Hilbe
2003). For binary data, the binomial distribution is applied
through the logit link function. The variance of a binomially
distributed population with mean µ is equal to µ/(1 − µ).

Because of the potential for responses to be similar within
experimental units, we used the GEE method for our logistic
regression analyses, employing the exchangeable correlation
structure. An iterative approach using residuals was used to
estimate the correlation between individual trees (Liang and
Zeger 1986). Iteration was continued until convergence was
reached. Exchangeable correlation structure assumes that the
correlation between any two responses in an experimental
unit is the same (Hardin and Hilbe 2003). The GEE method
yields consistent estimates of regression coefficients and their
variances, even with misspecification of the structure of the
covariance matrix, and loss of efficiency from an incorrect
choice of the correlation structure is lessened as the number
of subjects gets large (Diggle et al. 1994).

Backward stepwise elimination was used for logistic
regression analyses and model building (Menard 1995; van
Mantgem et al. 2003). In backward stepwise elimination, the
analysis begins with a saturated model that contains all of the
explanatory variables. The variable with the smallest Wald
statistic term (Hosmer and Lemeshow 2000; Duncan and
Chapman 2003) is selected and tested for significance. If
the variable is found to have a P-value greater than 0.05, it is
removed and a new, reduced model is fitted to the data. Each
variable is examined systematically to see if removing it from
the model would significantly cause the overall fit to deteri-
orate. The fit of the model was tested after the elimination
of each variable to ensure that the model still adequately fit
the data. When all of the remaining variables had a P-value
less than 0.05, we declared the analysis complete. As a result,
the model consists entirely of variables that are statistically
significant (Hosmer and Lemeshow 2000).

At each step, the significance of the explanatory variable
being removed was tested using the Wald test (Hosmer and
Lemeshow 2000; Duncan and Chapman 2003). The Wald
test uses Z-statistics calculated by dividing the coefficients
by their robust standard error (White 1982; Beck 1996). The
Z-statistics were then squared to yield Wald statistics that
follow a chi-square distribution with one degree of freedom.
Explanatory variables with coefficients not significantly dif-
ferent from zero (P > 0.05) were removed from the model.
A multiple Wald test was used for categorical variables
(Hosmer and Lemeshow 2000). Only variables that were
not strongly correlated (correlation coefficient < 0.60) were
used in the development of our logistic regression models.
Stepwise regression procedures do not prevent correlated
explanatory variables from entering the models, so super-
vision was required (Battaglin et al. 2003). Because the GEE
procedure was used, deviance statistics were not available
and likelihood ratio tests were not possible. Although the

likelihood ratio test is recommended for logistic regression,
the Wald test is asymptotically equivalent with large sample
sizes (Hosmer and Lemeshow 2000).

The Hosmer–Lemeshow goodness of fit test was used to
evaluate the fit of the final models to the data (Hosmer and
Lemeshow 2000; van Mantgem et al. 2003). The test first
partitioned the data into groups based on the predicted prob-
ability of mortality. We used 10 ordered groups: those with
estimated probabilities below 0.1 formed the first group, and
each subsequent group had an incremental increase in prob-
ability of 0.1, with the highest group having a probability
of mortality of 0.9 to 1.0. The sum of the predicted prob-
ability of mortality of all trees in a decile was used as the
projected number of trees expected to die in that class. Each
decile was further divided into two sets, based on the actual
observed status of the trees in 2001 (alive, dead) and the
number of observed dead trees. If the models are good, then
the projected number of dead trees should be close to the
observed number of dead trees. The Hosmer–Lemeshow test
statistic (HL) was calculated by comparing the observed and
expected frequencies of the dead trees in the decile groups.
The test statistic has a chi-square distribution with a desir-
able outcome of non-significance (P > 0.05), indicating that
the model prediction does not significantly differ from the
observed data.

All data analyses were done with S-Plus 2000 (MathSoft
1999). The GEE S-Plus function version 4.13 (Carey 1998)
was used to conduct the GEE logistic regression analyses.

Results

Prior to prescribed burning there were 3711 trees on 72 plots
in the 12 experimental units to be burned.At the first post-fire
examination of the stands, about 1 month after trees resumed
growth at all burn units, there were 278 trees with all needles
consumed or scorched; all were presumed dead. However,
at the end of the first growing season after the burns (fall
1998), 30 of the trees (eight and 22 from fall and spring
burns, respectively) with all needles consumed or scorched
had regreened (sprouted needles) (Thies et al. 2005). These
30 were included with trees that survived the burns, leaving
248 tagged trees designated immediate mortality and 3463
trees classified as alive after the fire and examined and eval-
uated for this study. Analysis by logistic regression required
complete data for each tree included. Of the 3463 trees of
interest, records for 48 trees were incomplete: damage to the
top prevented measuring a tree height (n = 42) or tree posi-
tion prevented obtaining a measurement such as dbh (n = 6).
All logistic regression analyses were conducted on a reduced
dataset of 3415 ponderosa pines that survived for at least
1 month after the burns and for which values were avail-
able for all variables: fall burn, 1694 trees; spring burn, 1721
trees. Incomplete tree records were examined for a pattern
relating to size, condition, location, and season of burn that
might inadvertently introduce a bias into the results; none was
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Table 3. Variables evaluated by logistic regression
and their associated P-values (n = 3415)

Variable P-value

Morphological variables
Diameter at breast height 0.4114
Tree height 0.2226
Live crown ratio 0.0001

Damage variables
Needle scorch proportion 0.0001
Bud kill proportion 0.0001
Ground char severe 0.6742
Basal char severe 0.0001
Basal char minimum 0.1804
Bole scorch proportion 0.0001

Season of burn 0.8061

detected. For comparison purposes, the means and standard
errors of continuous variables for trees in the prescribed burn
areas classed as survivors or as delayed mortality through fall
2001 are given in Table 2.

The mean litter and duff depth at random points on
the unburned experimental units was 5.3 cm (s.e. = 0.33),
whereas the mean depth around trees on those units was 8.11
cm (s.e. = 0.20). Differences in litter and duff depth were not
significant between stands either around trees (P = 0.59) or
at random points (P = 0.50).

Using a backward stepwise procedure, we were able to
successfully build a logistic regression model comprising
five tree level descriptors as predictors of tree mortality four
growing seasons after the treatment. All of the variables used
to build the model and their stepwise P-values are given
in Table 3. The five significant variables from the logistic
regression model, along with their associated coefficients and
standard errors, are given in Table 4.

The following Eqn (1) (using coefficients from Table 4)
can be used to determine P(m) (the probability of a particular
tree dying after a burn):

LOGIT P(m) = − 2.2545

− 3.75 × (live crown proportion)

+ 2.08 × (needle scorch proportion)

+ 3.57 × (bud kill proportion)

+ 0.3018 × (basal char severe)

+ 3.45 × (bole scorch proportion)

P(m) = EXP(LOGIT[π])/
(1 + EXP[LOGIT{π}]) (1)

Based on suggestions in Kerns et al. (2006) andThies et al.
(2005), and after the final model was derived, we specifically
tested the hypothesis that fire intensity was more impor-
tant than burn season in determining delayed tree mortality.
Because we did not have direct measures of fire intensity, we
used the observed result of fire intensity (variables that are

Table 4. Full model (five variables) logistic regression
table for tree mortality after prescribed burns in pon-
derosa pine stands near Burns, Oregon, with the coeffi-

cient and robust standard error (s.e.)

Variable Coefficient Robust s.e.

Intercept −2.2545 0.5261
Live crown proportion −3.7467 0.8972
Needle scorch proportion 2.0834 0.3450
Bud kill proportion 3.5714 0.5634
Basal char severe 0.3018 0.0505
Bole scorch proportion 3.4466 0.3196

Table 5. Reduced model (two variables) logistic regression table for
tree mortality after prescribed burns in ponderosa pine stands near
Burns, Oregon, with the coefficient and robust standard error (s.e.)

NA, not applicable

Variable Coefficient Robust s.e.

Intercept −4.4635 NA
Needle scorch proportion 3.3328 0.3153
Bole scorch proportion 6.6203 0.8879

measures of tree damage) as a surrogate. After accounting for
the five significant fire damage variables (Table 4), we found
no evidence of a difference in the probability of a tree dying
in spring v. fall (Wald statistic = 0.060, P = 0.8061).

To provide managers with a reduced model more readily
applied in the field, we selected two easily measured variables
(needle scorch proportion and bole scorch proportion) from
the main model, and logistic regression was used to develop
Eqn (2) (using coefficients from Table 5):

LOGIT P(m) = − 4.4635

+ 3.33 × (needle scorch proportion)

+ 6.62 × (bole scorch proportion)

P(m) = EXP(LOGIT[π])/
(1 + EXP[LOGIT{π}]) (2)

The full model (five variables) had a good fit to the data:
HL = 8.64, d.f. = 8, P = 0.3732. The full model predicted a
total mortality of 542 trees, based on the five variables of
damage caused by the prescribed burn. Table 6 illustrates the
fit of both models across the range of probability-of-mortality
classes. A total of 550 trees died (Table 6). The five-variable
model correctly predicted 98.5% (542/550) of the observed
mortality.

The reduced model (two variables) also had a good fit
to the data (Table 6): HL = 12.05, d.f. = 8, P = 0.1488. The
reduced model predicted a total mortality of 530 trees, based
on the two measured variables of damage caused by the pre-
scribed burn (Table 6). This model correctly predicted 96.4%
(530/550) of the observed mortality. We anticipate that for
making land management decisions, managers will be con-
cerned with probabilities of mortality greater than 0.60 for
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Table 6. Calculated mortality and observed mortality for full model (five variables) and reduced model (two variables) across the range of
mortality classes

Probability-of-mortality classes, mid-point % Total

5 15 25 35 45 55 65 75 85 95

Full model
Total trees in class (n) 2393 278 162 92 80 61 59 56 80 154 3415
Projected dead (n) 66 39 39 32 36 33 39 42 68 148 542
Observed dead (n) 82 34 41 23 38 33 32 44 70 153 550

Reduced model
Total trees in class (n) 2315 280 162 130 153 99 82 78 59 57 3415
Projected dead (n) 64 41 40 46 69 54 53 59 50 54 530
Observed dead (n) 80 44 29 43 60 67 56 61 55 55 550

Table 7. Classification table based on the 10-variable saturated
model logistic regression using a cutoff of 0.6

Overall rate of correct classification = ([2820 + 300]/3415) × 100 =
91.4%; overall rate of correctly predicting

mortality = 300/345 × 100 = 87.0%

Predicted Observed

Alive Dead Total

Alive P(m) < 0.6 2820 250 3070
Dead P(m) > 0.6 45 300 345
Total 2865 550 3415

Table 8. Classification table based on the full-model (five variables)
logistic regression using a cutoff of 0.6

Overall rate of correct classification = ([2815 + 299]/3415) × 100 =
91.2%; overall rate of correctly predicting

mortality = 299/349 × 100 = 85.7%

Predicted Observed

Alive Dead Total

Alive P(m) < 0.6 2815 251 3066
Dead P(m) > 0.6 50 299 349
Total 2865 550 3415

individual trees. Considering the data from only those trees
with a probability of mortality greater than 0.60, there was
no evidence of a lack of fit of the reduced model to that data
(HL = 3.66, d.f. = 3, P = 0.3007).

We used classification tables based on a cutoff of 0.60
probability of mortality as a supplemental measure of model
fit. Classification tables were prepared for the saturated model
(Table 7), five-variable full model (Table 8), and two-variable
reduced model (Table 9). The overall rates of correct classi-
fication were 91.4%, 91.2%, and 89.1%, respectively. The
overall rates of correctly predicting mortality of individual
trees were 87.0%, 85.7%, and 82.2%, respectively.

Discussion

The present study demonstrated that probability of delayed
mortality of ponderosa pine in prescribed burns in the south-
ern Blue Mountains of Oregon can be predicted with a single
model regardless of the burn season. Thies et al. (2005)
reported that the proportion of trees dying was higher after

Table 9. Classification table based on the reduced-model (two
variables) logistic regression using a cutoff of 0.6

Overall rate of correct classification = ([2816 + 227]/3415) × 100 =
89.1%; overall rate of correctly predicting

mortality = 227/276 × 100 = 82.2%

Predicted Observed

Alive Dead Total

Alive P(m) < 0.6 2816 323 3139
Dead P(m) > 0.6 49 227 276
Total 2865 550 3415

a fall prescribed burn than after a spring prescribed burn in
the six stands examined in the present study.Two mechanisms
likely could explain this seasonal difference in tree mortality:
(i) differences in the physiological state of the trees owing to
the season in which the prescribed burn was conducted; and
(ii) seasonal variation in fire intensity due to differences in
weather and fuel conditions. The prescription was the same
and was met for burns in both seasons, but it appeared that
the fall burns were somewhat more intense than the spring
burns. Amount of fuel was the same for all treatments, the
litter and duff layer averaged 5.3 cm in thickness, and con-
tinuity was broken by open patches of gravel and soil. In
both seasons, burning was concentrated around the bases of
trees and blackened, on average, a little more than half of
the area (Thies et al. 2005), which resulted in heterogeneous
burn intensity and coverage, making it difficult to visually
compare units. Although neither fire intensity nor fuel con-
sumption was monitored, indications were that the fall burn
was hotter than the spring burn (Thies et al. 2005). After
accounting for the fire damage variables (Table 2), there was
no indication of a difference in mortality between fall burns
and spring burns. We interpreted this to mean that trees with
similar degrees of damage from either burn season would
have about the same probability of delayed mortality. As a
result, only one model is needed rather than two separate
seasonal models, and it can be based on all trees in the burns
(n = 3415).

The 10 independent variables included in the analysis fell
into six categories: morphological (n = 3), crown (n = 2),
bole scorch (n = 1), basal char (n = 2), ground char (n = 1),
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and season of burn (n = 1). Five variables were significant:
one was a morphological variable and four were damage
variables.

Morphological variables

Diameter at breast height was tested in the logistic regression
but was not significant and thus not included in the model.
Dbh is an easy-to-measure indicator of properties related
to tree size, such as height, bark thickness, and volume of
crown. Thus, stem diameter not only directly reflects a tree’s
relative resistance to cambial damage but also is an impor-
tant indicator of resistance to crown damage. Other logistic
regression models predicting ponderosa pine mortality use a
measure of tree size and a measure of fire damage as inde-
pendent variables (Harrington and Hawksworth 1990; Save-
land et al. 1990; Harrington 1993; Regelbrugge and Conard
1993; Finney 1999; Stephens and Finney 2002; McHugh and
Kolb 2003).

Crown variables

The amount of crown damage to a ponderosa pine is widely
considered the most useful predictor of fire-caused mortal-
ity. Our results parallel other studies of ponderosa pine that
document increased tree mortality with increasing crown
scorch or damage (Herman 1954; Wagener 1961; Dieterich
1979; Wyant et al. 1986; McHugh and Kolb 2003). That
tree mortality is related to crown damage as represented
by the proportion of the crown scorched or killed has also
been demonstrated for at least seven other species of western
conifers (Peterson 1985; Peterson and Arbaugh 1986; Ryan
and Reinhardt 1988).

Needle scorch proportion and bud kill proportion are
slightly different measures of crown damage. Needle scorch
proportion reflects the proportion of the crown in which the
needles are scorched (killed). Bud kill proportion reflects the
proportion of the crown in which the heat kills both nee-
dles and branch buds, a far more serious injury to the tree
(Wagener 1961). The surviving buds on trees may not be
observable until some months after the fire.

In the present study, as the needle scorch proportion
increased there was a corresponding increase in the pro-
portion of trees that died (Fig. 1). Our observation that tree
mortality varies continuously with needle scorch proportion
was not consistent with earlier papers reporting threshold
levels of damage above which mortality increased dramati-
cally: a threshold of 80% on 1367 trees observed from two
wildfires and one prescribed fire (McHugh and Kolb 2003);
a threshold of 60% on 235 trees observed from one wild-
fire (Herman 1954); a threshold of 67% on 210 trees from a
prescribed burn (Davis et al. 1968); a threshold of 80% on
200 trees observed from one wildfire (Lynch 1959); and a
threshold of 90% on 526 trees observed from dormant and
growing-season prescribed burns (Harrington 1993). Some
of the differences in recorded thresholds among the earlier
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Fig. 1. Proportion of tree mortality by needle scorch proportion class.

studies may have resulted from dissimilar scorch-class widths
and overlapping of scorch classes near threshold levels, and
from the nature of the fires, especially wildfires, where there
may have been unreported basal charring or bole damage
that contributed to the death of trees. The fact that we found a
continuously increasing mortality response to an increasing
value for crown scorch may be explained by a larger sam-
ple size (1490 trees with some crown scorch from 3415 trees
sampled after prescribed burns).

Bole damage variables

We assumed that damage to the bole was an indication of
injury to the cambium, and we recorded variables to evalu-
ate damage at both the base of the tree, measured as basal
char, and to the bole, measured as bole scorch (blackening).
Ryan et al. (1988) working with Douglas-fir found that the
bole damage, expressed as the number of quadrants with dead
cambium, is more valuable for predicting mortality than is the
proportion of crown volume scorched. We chose to evaluate
external damage and did not attempt to measure the amount
of dead cambium directly. A direct examination of the cam-
bium would have required further injury to the trees (bark
penetration or removal), likely increasing insect attack and
potentially altering the outcome of the study. We chose to
evaluate visible external damage variables. The only signif-
icant basal char variable was basal char severe, a count of
the most damaged quadrants, where the char class was either
a ‘3’ (deep char, bark characteristics lost) or a ‘4’ (consump-
tion was complete enough to expose the wood), and was a
surrogate measure of the proportion of the circumference of
the tree where the cambium was killed by the fire. Basal char
minimum was a measure of the least-damaged quadrant on
each tree and, because we felt a tree could survive with one
quadrant intact, was an indication of a tree’s ability to survive
after a fire. We concluded that the measure of severe damage
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Fig. 2. Proportion of tree mortality by bole scorch proportion class.

is a more sensitive indicator of survivability than the measure
of minimum damage.

The highest scorch on the bole stated as a proportion of
total tree height (bole scorch proportion) was significant in
the model and was not correlated with other model variables.
Bole scorch proportion is the same variable that Regelbrugge
and Conard (1993) labeled ‘relative char height’ and also
found to be significant in both two-factor and one-factor
models. In the present study, as the bole scorch propor-
tion increased, there was a corresponding increase in the
proportion of the trees that died (Fig. 2).

We anticipated that with higher scorch on the bark would
come more heat, and thus an increased likelihood of scorch
to the crown. Thus we expected bole scorch proportion to be
correlated with needle scorch proportion, but such was not
the case. We speculate that heated air scorching the crown of
a tree and the heated air or radiant heat impacting the bole
of that tree do not necessarily originate from the same fuel.
The prescribed burns in our study were intentionally kept at
a relatively low intensity and the burn did not cover the entire
area (less than 60% coverage on our plots). As a result, the
fire was not uniform and the heat column from the fire was
likely to be tilted by any wind, even that generated by the fire
or a slope, causing the heat column to scorch the bole of one
tree as it moved up to come in contact with the crowns of
adjacent trees downwind.

Duff consumption

There is little guidance in the literature for interpreting the
effect that duff consumption will have on the increased prob-
ability of mortality of ponderosa pine. In general, large
ponderosa pine roots will be deep and thus unlikely to be
harmed by the consumption of duff; however, Swezy and
Agee (1991) provide evidence that duff consumption may
injure fine roots of ponderosa pine, which may grow into the
duff layer at certain times of the year. Our observations were

limited to the area immediately adjacent to the base of the
trees. The impact of the duff consumption that we observed is
likely to kill cambium. The measure of severe duff consump-
tion (ground char severe) was not significant when evaluated
in the logistic regression. It is likely that evaluation of the
duff consumption immediately adjacent to the tree is a dupli-
cation of the evaluation of basal char and does not provide
additional information. We speculate that an evaluation of the
impact of duff consumption in a broader area, perhaps out to
the drip-line of the tree, may provide a useful guide to the
impact of duff consumption on tree mortality.

Of the five significant variables used in the full model,
one addresses a pre-burn condition, two reflect damage to
the crown, and two reflect damage to the bole. Use of the
full five-factor model will yield the most accurate predic-
tion of post-burn delayed mortality, but a reduced model is
proposed to simplify field application. We propose that a two-
variable model to predict delayed mortality of trees observed
shortly after a prescribed fire should include needle scorch
proportion and bole scorch proportion. Both variables were
significant in the primary model, are easily and consistently
measured with a minimum of subjective judgment, do not
require that an observer approach each tree (thus saving field
time), were used in earlier models, and occurred to some
degree on most trees in the burn units. Of 3415 trees on
the burn units, only 117 lacked both bole and crown scorch;
of these, one died by fall 2001. The other three variables
are equally significant in the full model but would be less
convenient or easy to measure in the field:

• Live crown proportion – the lower limit of the pre-fire
live crown is often not easy to identify given that some
needles may be consumed and some may fall off before the
survey;

• Bud kill proportion – to measure the limit of the bud kill
requires that the observer wait until the crowns have had a
chance to regreen; this delay may not be desirable depend-
ing on the timing of other activities and, depending on the
tree, regreening is not always easy to see; and

• Basal char severe – to make this evaluation the observer
must walk up to and around every tree, thus increasing the
time required to do a survey.

The two-variable reduced model was almost as good at pre-
dicting tree mortality as the five-variable full model (96.4%
and 98.5%, respectively). It is likely that a manager would
mark for removal only those trees with more than 60% prob-
ability of predicted mortality. The reduced model fits the data
well in the range of 60–100% probability of mortality. The
reduced model offers an adequate estimate of tree mortality
that is easier to obtain than one based on the full model.

Several variables were considered but not included in the
analysis reported here because they were highly correlated
with dbh (such as diameter at stump height and bark thick-
ness) or one class of the variable was so infrequent as to make
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the predictive relationship meaningless (such as bark color
and needle compliment).

Conclusions

Two models have been developed for predicting the delayed
mortality of ponderosa pine following a prescribed fire con-
ducted in either the fall or spring. Either the full or the reduced
model should prove useful for projecting delayed mortal-
ity in stands that have received a prescribed burn. These
models should be useful to managers planning post-burn sal-
vage operations and to ecologists interested in the role of
prescribed fire in determining the structure of forest com-
munities. The process involved in fire-caused mortality of
trees is still poorly understood. Better understanding of the
relationships between fire damage to individual trees and the
injury to those trees will improve our ability to predict delayed
mortality in prescribed burns and wildfires alike.

We found that ponderosa pine mortality from similar pre-
scribed burns was higher after fall burns than after spring
burns. We concluded that this was because dryer fuels and
burn conditions caused the fall burns to be somewhat more
intense even though the fire plan was to keep the inten-
sity low. We concluded that the mortality is related to the
damage inflicted on each tree rather than the season, as mor-
tality relates to the physiological state of the trees. Care
should be exercised in extrapolating results and using these
models beyond the geographical area of the sampled stands
or to species other than ponderosa pine until additional
datasets are available to validate the models for other areas or
species.

Acknowledgements

The authors thank the Malheur National Forest and the Emi-
grant Creek Ranger District for their support throughout
the planning and execution of this study. Without their con-
stant and unselfish support, this project would not have been
possible. Fieldwork was conducted with funds provided by
Forest Health Protection of the US Department ofAgriculture
Forest Service through the Special Technology Develop-
ment Program. We thank Craig Schmitt, Zone Pathologist,
Wallowa-Whitman NF, who raised the question of a black
stain root disease/season-of-burn interaction and provided
his experience, knowledge, and time to help get the study
installed; Roland (Buddy) Crisafi, Gene Mackey, and Kim
Valentine for supervising the prescribed burns; and Kevin
Ryan for discussions in the field and, along with Charles
McHugh and Michael Harrington, for valuable suggestions
and recommendations during model building. Thanks also to
crew leader Megan Pankey and the many members of our
field crews who worked long and hard and hot to establish
the study and collect the necessary data; Pat Cunningham for
his efforts to explore innovative statistical techniques; and
to Mike Marsden and Dan Schaffer for statistical consult-
ing and support and thoughtful review comments. We thank

Paul Anderson, Greg Filip, Michael Harrington, Rick Kelsey,
Becky Kerns, Charles McHugh, and Dave Peterson for com-
ments, discussions, and reviews during the development of
this manuscript. Finally, we thank the several anonymous
reviewers for careful and useful comments on an earlier
version of this manuscript.

References

Avila OB, Burkhart HE (1992) Modeling survival of loblolly pine trees
in thinned and unthinned plantations. Canadian Journal of Forest
Research 22, 1878–1882.

Battaglin WA, Ulery RL, Winterstein T, Welborn T (2003) ‘Esti-
mating the susceptibility of surface water in Texas to non-point-
source contamination by use of logistic regression modeling.’ US
Department of the Interior, US Geological Survey. Water-Resources
Investigations Report 03-4205.

Beck N (1996) Reporting heteroskedasticity-consistent standard errors.
The Political Methodologist 7(2), 4–6.

Carey V (1998) ‘GEE: Generalized linear models for dependent
data, gee S-function, version 4.13.’ (Statlib, Department of Statis-
tics, Carnegie Mellon University: Pittsburgh, PA) Available at
http://lib.stat.cmu.edu/S/ [Verified May 2004]

Davis JR, Ffolliott PF, ClearyWP (1968) ‘A fire prescription for consum-
ing ponderosa pine duff.’ USDA Forest Service, Rocky Mountain
Forest and Range Experiment Station Research Note RM-115. (Fort
Collins, CO)

Dieterich JH (1979) ‘Recovery potential of fire-damaged southwestern
ponderosa pine.’ USDA Forest Service, Rocky Mountain For-
est and Range Experiment Station Research Note RM-379. (Fort
Collins, CO)

Diggle PJ, Liang KY, Zeger SL (1994) ‘Analysis of longitudinal data.’
(Clarendon Press: Oxford)

Duncan RS, Chapman CA (2003) Tree–shrub interactions during early
secondary forest succession in Uganda. Restoration Ecology 11,
198–207. doi:10.1046/J.1526-100X.2003.00153.X

Finney MA (1999) ‘Fire-related mortality in ponderosa pine in east-
ern Montana.’ Intermountain Fire Sciences Laboratory Final Report
INT-93800-RJVA. (Missoula, MT)

Fowler JF, Sieg CH (2004) ‘Post-fire mortality of ponderosa pine and
Douglas-fir: a review of methods to predict tree death.’ USDA For-
est Service, Rocky Mountain Research Station General Technical
Report RMRS-GTR-132. (Fort Collins, CO)

Hamilton DA (1974) ‘Event probabilities estimated by regres-
sion.’ USDA Forest Service, General Technical Report INT-152.
(Ogden, UT)

Hamilton DA (1990) Extending the range of applicability of an individ-
ual tree mortality model. Canadian Journal of Forest Research 20,
1212–1218.

Hardin JW, Hilbe JM (2003) ‘Generalized estimating equations.’ (Chap-
man & Hall/CRC: Boca Raton, FL)

Harrington MG (1987) Ponderosa pine mortality from spring, sum-
mer, and fall crown scorching. Western Journal of Applied Forestry
2, 14–16.

Harrington MG (1993) Predicting Pinus ponderosa mortality from dor-
mant season and growing season fire injury. International Journal
of Wildland Fire 3, 65–72. doi:10.1071/WF9930065

Harrington MG, Hawksworth FG (1990) Interactions of fire and
dwarf mistletoe on mortality of southwestern ponderosa pine. In
‘Effects of fire management of southwestern natural resources: Sym-
posium proceedings’. pp. 234–240. (Tech. coord. JS Krammes)
USDA Forest Service, Rocky Mountain Forest and Range
Experiment Station General Technical Report RM-191. (Fort
Collins, CO)



Predicting fire-caused Pinus ponderosa mortality Int. J. Wildland Fire 29

Herman FR (1954) ‘A guide for marking fire-damaged ponderosa pine
in the southwest.’USDA Forest Service, Rocky Mountain Forest and
Range Experiment Station Research Note 13. (Fort Collins, CO)

Hosmer D, Lemeshow S (2000) ‘Applied logistic regression.’ 2nd edn.
(John Wiley and Sons: New York)

Kerns BK, Thies WG, Niwa CG (2006) Season of prescribed burn
in ponderosa pine forests: implications for native and exotic plant
species. Ecoscience 13, in press.

Liang K-Y, Zeger SL (1986) Longitudinal data analysis using general-
ized linear models. Biometrika 73, 13–22.

Lynch DW (1959) ‘Effects of a wildfire on mortality and growth of
young ponderosa pine trees.’ USDA Forest Service, Intermoun-
tain Forest and Range Experiment Station Research Note INT-66.
(Ogden, UT)

MathSoft (1999) ‘S-Plus 2000.’ (Data Analysis Products Division,
MathSoft: Seattle, WA)

McCullagh P, Nelder JA (1991) ‘Generalized linear models.’ 2nd edn.
(Chapman and Hall: London)

McHugh CW (2001) Probability of ponderosa pine morality following
fire in northern Arizona. MS Thesis, Northern Arizona University,
Flagstaff, AZ.

McHugh CW, KolbTE (2003) Ponderosa pine mortality following fire in
northern Arizona. International Journal of Wildland Fire 12, 7–22.
doi:10.1071/WF02054

Menard S (1995) ‘Applied logistic regression analysis. Quantitative
Applications in the Social Sciences No. 106.’ (Sage Publications:
Thousand Oaks, CA)

Monserud RA (1976) Simulation of forest tree mortality. Forest Science
22, 438–444.

Peterson DL (1985) Crown scorch volume and scorch height: estimates
of post-fire tree condition. Canadian Journal of Forest Research 15,
596–598.

Peterson DL, Arbaugh MJ (1986) Post-fire survival in Douglas-fir and
lodgepole pine: comparing the effects of crown and bole damage.
Canadian Journal of Forest Research 16, 1175–1179.

Ramsey FL, Schafer DW (1997) ‘The statistical sleuth, a course in
methods of data analysis.’ (Duxbury Press: London)

Regelbrugge JC, Conard SG (1993) Modeling tree mortality follow-
ing wildfire in Pinus ponderosa forests in the central Sierra of
California. International Journal of Wildland Fire 3, 139–148.
doi:10.1071/WF9930139

Ryan KC (1983) Techniques for assessing fire damage to trees. In ‘Pro-
ceedings of the symposium: fire its field effects’. (Ed. JE Lotan)
pp. 2–10. (Intermountain Fire Council: Missoula, MT)

http://www.publish.csiro.au/journals/ijwf

Ryan KC, Reinhardt ED (1988) Predicting post-fire mortality of
seven western conifers. Canadian Journal of Forest Research 18,
1291–1297.

Ryan KC, Peterson DL, Reinhardt ED (1988) Modeling long-
term fire-caused mortality of Douglas-fir. Forest Science 34,
190–199.

Saveland JM, Bakken SR, Neuenschwander LF (1990) ‘Predicting mor-
tality from scorch height from prescribed burning for ponderosa pine
in northern Idaho.’University of Idaho, College of Forestry, Wildlife
and Range Sciences Bulletin Number 53. (Moscow, ID)

Stephens SL, Finney MA (2002) Prescribed fire mortality of Sierra
Nevada mixed conifer tree species: effects of crown damage and
forest floor combustion. Forest Ecology and Management 162,
261–271. doi:10.1016/S0378-1127(01)00521-7

Swezy DM, Agee JK (1991) Prescribed-fire effects on fine-root and tree
mortality in old-growth ponderosa pine. Canadian Journal of Forest
Research 21, 626–634.

Thies WG, Westlind DJ, Loewen M (2005) Season of prescribed
burn in ponderosa pine forests in eastern Oregon: impact on pine
mortality. International Journal of Wildland Fire 14, 223–231.
doi:10.1071/WF04051

Vanclay JK (1991) Compatible deterministic and stochastic predictions
by probabilistic modeling of individual trees. Forest Science 37,
1656–1663.

van Mantgem PJ, Stephenson NL, Mutch LS, Johnson VG, Esperanza
AM, Parsons DJ (2003) Growth rate predicts mortality of Abies con-
color in both burned and unburned stands. Canadian Journal of
Forest Research 33, 1029–1038. doi:10.1139/X03-019

Wagener WW (1961) ‘Guidelines for estimating the survival of fire-
damaged trees in California.’ USDA Forest Service, Pacific South-
west Forest and Range Experiment Station Miscellaneous Paper
PSW-60. (Berkeley, CA)

White H (1982) Maximum likelihood estimation of misspecified mod-
els. Econometrica 53, 1–16.

Wyant JG, Zimmerman GT (1983) Factors contributing to post-fire tree
mortality in central Rocky Mountain forests. In ‘Proceedings of
the Society of American Foresters National Convention’. (Eds ML
Duryea, GN Brown) pp. 271–275. (Society of American Foresters:
Bethesda, MD)

Wyant JG, Omi PN, Laven RD (1986) Fire-induced tree mortality in
a Colorado ponderosa pine/Douglas-fir stand. Forest Science 32,
49–59.

Zeger SL, Liang K-Y (1986) Longitudinal data analysis for discrete and
continuous outcomes. Biometrics 42, 121–130.


