# APPORTIONMENT OF VARIANCE ANALYSIS LICHEN DATA FROM THE ATHABASCA OIL SANDS REGION

STATISTICAL REPORT

**Prepared** for

#### Shanti Berryman Woods Buffalo Environmental Association Moab, Utah

April 2003

by



Pacific Analytics PO Box 219 Albany, OR 97321 (541) 926-0117

## APPORTIONMENT OF VARIANCE ANALYSIS LICHEN DATA FROM THE ATHABASCA OIL SANDS REGION STATISTICAL REPORT

Prepared by:

Pacific Analytics, L.L.C. Post Office Box 219 Albany, Oregon 97321 Tel. (541) 926-0117 mail@statpros.com www.statpros.com

Gregory Brenner Senior Associate / Project Manager

## Apportionment Of Variance Analysis AOS Lichen Data Table of Contents

## APPORTIONMENT OF VARIANCE ANALYSIS LICHEN DATA FROM THE ATHABASCA OIL SANDS REGION

#### STATISTICAL REPORT

## I. TABLE OF CONTENTS

| I.   | Table of Contents                                                                                        | 1                    |
|------|----------------------------------------------------------------------------------------------------------|----------------------|
| II.  | Executive Summary                                                                                        | 2                    |
| III. | Introduction<br>Questions of Interest<br>Species of Interest<br>Elements                                 | 3<br>4<br>4<br>5     |
| IV.  | Statistical Procedures                                                                                   | 6                    |
| V.   | Field Replicate Variation<br>Cladina mitis<br>Evernia mesomorpha<br>Hypogymnia physodes                  | 8<br>9<br>10<br>11   |
| VI.  | Laboratory Replicate Variation<br>Cladina mitis<br>Evernia mesomorpha<br>Hypogymnia physodes             | 12<br>13<br>14<br>15 |
| VII. | Pollution Deposition Variation Among Sites<br>Cladina mitis<br>Evernia mesomorpha<br>Hypogymnia physodes | 16<br>17<br>18<br>19 |

### Apportionment Of Variance Analysis AOS Lichen Data Executive Summary

## **II. EXECUTIVE SUMMARY**

This is a report of statistical analysis of the apportionment of variance within the Lichen Data from the Athabasca Oil Sands Region. The report answers three questions of interest. They are:

- 1. What is the relative error due to laboratory analysis, as measured with laboratory replicates?
- 2. What is the error due to field collections, as measured by field replicates?
- 3. What is the error due to pollution deposition among sites?

The report includes an introduction to the analysis, a description of the statistical procedures, and the results of the analyses.

The results are presented in three chapters, one dealing with each question of interest.

## Apportionment Of Variance Analysis Northeastern Alberta Lichen Data Introduction

STEEPETTY STATESTY S

### **III. INTRODUCTION**

Lichens are a unique life form, consisting of a relationship between a fungus and a photosynthetic partner, a cyanobacterium or a green alga. The association is said to be symbiotic, such that the fungus provides moisture and shelter for the algal cells allowing them live even in places that otherwise would be unsuitable for them. Due to this symbiotic relationship, lichens are able to live in some of the harshest habitats on earth. Lichens are extremely widespread in nature; they occur from arid desert regions to the Arctic and grow on bare soil, tree trunks, and rocks. Lichens grow very slowly, often less than a millimeter per year.

Lichens lack any outside covering, or cuticle, and consequently are directly exposed to the atmosphere, which they depend upon for their nutrients and water. Moistened lichen tissues act as blotters, soaking up chemicals or materials deposited on their surfaces. This feature has also made them highly susceptible to air pollutants; and lichens are perhaps the plant species most susceptible to sulfur dioxide, heavy metals, and acid rain.

Since lichens are very sensitive to pollutants, they are sometimes used as indicators of air and water pollution. Lichens are investigated at a number of locations surrounding a point or area pollution source, or at a number of locations within an area of interest. Appropriate lichen metrics are recorded at each location and are related to known or inferred pollution levels. The metrics include distribution of individual

## Apportionment Of Variance Analysis Northeastern Alberta Lichen Data Introduction

indicator species, frequency or abundance of individual species, species richness (total number of different species) at each study location, total lichen cover, and element content of lichen samples.

When assessing pollution with lichens it is appropriate to apportion the variance of the data into its various sources. Variability in element content is dependent upon the ability to collect a representative sample, the precision of laboratory measurement, and the natural variability among sites due to environmental variables such as air pollution, rainfall, temperature, and substrate.

#### **Questions of Interest**

- 1. What is the relative error due to laboratory analysis, as measured with laboratory replicates?
- 2. What is the error due to field collections, as measured by field replicates?
- 3. What is the error due to pollution deposition among sites?

#### **Species of Interest**

Element content was measured from three lichen species:

- 1 Clamit = *Cladina mitis*
- 2 Evemes = Evernia mesomorpha
- 3 Hypphy = *Hypogymnia physodes*

## Apportionment Of Variance Analysis Northeastern Alberta Lichen Data Introduction

#### Elements

Twenty-nine elements were detected in laboratory analysis:

Percent Nitrogen, Percent Sulfur, parts per million (ppb for Hg) of Al, As,

B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Rb, Si, Sr, Ti, V, Zn.

## Apportionment Of Variance Analysis Northeastern Alberta Lichen Data Statistical Procedures

TTERESTITERESTITERESTITERESTITERESTITERESTITERESTITERESTITERESTITEREST

#### **IV. STATISTICAL PROCEDURES**

The data were compiled and delivered to Pacific Analytics on April 23, 2003 for analysis. The element content of three lichen species were delivered in spreadsheet format with columns for Lab ID #, Site #, Direction to Mine, Distance to Mine, Species acronym, and replicate code.

Using various forms of the variance formula

$$\sum_{i=1}^{Samples} \sum_{j=1}^{Sites} (y_{ij} - y_{i.})^2$$

where  $y_{ij}$  is the replicate value and  $y_{i.}$  is the mean for the site or sample.

To calculate the variance due to field replicates and laboratory replicates, the sample mean was calculated from the replicates for each site or sample. The deviation from the mean was calculated by subtracting the mean from the measured value of each replicate. This was squared and summed to arrive at the sum of squared deviations. The mean squared deviation (variance) was calculated by dividing the sum of squared deviations by one less than the number of sample replicates. The standard deviation was calculated by taking the square root of the variance.

## Apportionment Of Variance Analysis Northeastern Alberta Lichen Data Statistical Procedures

#### 

The apportioned variance for among site pollution deposition was determined by first calculating the overall variance and the total sums of squares for all replicates. In this case the formula used was

$$\sum_{i=1}^{Samples} \sum_{j=1}^{Sites} (y_{ij} - y_{..})^2$$

where y is the grand mean for all replicates.

The difference between the total sums of squares and the field sums of squares is the variance due to among site variation (reported as the sum of squares sites).

## Apportionment Of Variance Analysis Northeastern Alberta Lichen Data Field Replicates

## **V. FIELD REPLICATE VARIATION**

Presented in Tables V-1, V-2, and V-3 are the variances in field replication. For each element, the Sums of Squared Deviations, the Mean Squared Deviation (variance), and Standard Deviation are reported. The Standard Deviation is a measure of the variation within the sites.

| CLADINA MITIS             |          |          |            |           |            |          |           |            |          |
|---------------------------|----------|----------|------------|-----------|------------|----------|-----------|------------|----------|
| ELEMENT                   | N (%)    | S (%)    | AI (ppm)   | As (ppm)  | B (ppm)    | Ba (ppm) | Be (ppm)  | Ca (ppm)   | Cd (ppm) |
| SUM OF SQUARED DEVIATIONS | 0.144    | 0.003    | 75718.302  | 0.074     | 11.913     | 78.733   | 0.000     | 459335.658 | 3.299    |
| MEAN SQUARED VARIATION    | 0.002    | 0.000    | 958.460    | 0.001     | 0.151      | 0.997    | 0.000     | 5814.375   | 0.042    |
| STANDARD DEVIATION        | 0.043    | 0.006    | 30.959     | 0.031     | 0.388      | 0.998    | 0.001     | 76.252     | 0.204    |
|                           |          |          |            |           |            |          |           |            |          |
| ELEMENT                   | Co (ppm) | Cr (ppm) | Cu (ppm)   | Fe (ppm)  | K (ppm)    | Li (ppm) | Mg (ppm)  | Mn (ppm)   | Mo (ppm) |
| SUM OF SQUARED DEVIATIONS | 0.002    | 1.480    | 18.141     | 62758.066 | 777728.282 | 0.050    | 31667.856 | 9829.668   | 0.060    |
| MEAN SQUARED VARIATION    | 0.000    | 0.019    | 0.230      | 794.406   | 9844.662   | 0.001    | 400.859   | 124.426    | 0.001    |
| STANDARD DEVIATION        | 0.004    | 0.137    | 0.479      | 28.185    | 99.220     | 0.025    | 20.021    | 11.155     | 0.027    |
|                           |          |          |            |           |            |          |           |            |          |
| ELEMENT                   | Na (ppm) | Ni (ppm) | P (ppm)    | Pb (ppm)  | Si (ppm)   | Sr (ppm) | Ti (ppm)  | V (ppm)    | Zn (ppm) |
| SUM OF SQUARED DEVIATIONS | 310.065  | 3.040    | 137783.849 | 0.295     | 106658.034 | 6.950    | 18.085    | 1.219      | 128.034  |
| MEAN SQUARED VARIATION    | 3.925    | 0.038    | 1744.099   | 0.004     | 1350.102   | 0.088    | 0.229     | 0.015      | 1.621    |
| STANDARD DEVIATION        | 1.981    | 0.196    | 41.762     | 0.061     | 36.744     | 0.297    | 0.478     | 0.124      | 1.273    |
|                           |          |          |            |           |            |          |           |            |          |

| ELEMENT                   | Hg (ppb) |
|---------------------------|----------|
| SUM OF SQUARED DEVIATIONS | 1284.928 |
| MEAN SQUARED VARIATION    | 16.265   |
| STANDARD DEVIATION        | 4.033    |

#### Table V-2. Field Replicate Variation of Evernia mesomorpha lichen.

EVERNIA MESOMORPHA

| ELEMENT                   | N (%) | S (%) | Al (ppm)   | As (ppm) | B (ppm) | Ba (ppm) | Be (ppm) | Ca (ppm)    | Cd (ppm) |
|---------------------------|-------|-------|------------|----------|---------|----------|----------|-------------|----------|
| SUM OF SQUARED DEVIATIONS | 0.123 | 0.003 | 167281.824 | 0.244    | 3.263   | 4.154    | 0.000    | 9210069.425 | 0.145    |
| MEAN SQUARED VARIATION    | 0.003 | 0.000 | 3801.860   | 0.006    | 0.074   | 0.094    | 0.000    | 209319.760  | 0.003    |
| STANDARD DEVIATION        | 0.053 | 0.008 | 61.659     | 0.074    | 0.272   | 0.307    | 0.003    | 457.515     | 0.058    |

| ELEMENT                   | Co (ppm) | Cr (ppm) | Cu (ppm) | Fe (ppm)   | K (ppm)    | Li (ppm) | Mg (ppm)  | Mn (ppm) | Mo (ppm) |
|---------------------------|----------|----------|----------|------------|------------|----------|-----------|----------|----------|
| SUM OF SQUARED DEVIATIONS | 0.000    | 0.980    | 27.373   | 229941.202 | 589556.305 | 0.184    | 18249.124 | 1468.494 | 0.131    |
| MEAN SQUARED VARIATION    | 0.000    | 0.022    | 0.622    | 5225.936   | 13399.007  | 0.004    | 414.753   | 33.375   | 0.003    |
| STANDARD DEVIATION        | 0.000    | 0.149    | 0.789    | 72.291     | 115.754    | 0.065    | 20.365    | 5.777    | 0.055    |

| ELEMENT                   | Na (ppm)  | Ni (ppm) | P (ppm)   | Pb (ppm) | Si (ppm)   | Sr (ppm) | Ti (ppm) | V (ppm) | Zn (ppm) |
|---------------------------|-----------|----------|-----------|----------|------------|----------|----------|---------|----------|
| SUM OF SQUARED DEVIATIONS | 12993.799 | 2.263    | 63048.264 | 2.249    | 119561.184 | 8.091    | 50.299   | 5.859   | 141.767  |
| MEAN SQUARED VARIATION    | 295.314   | 0.051    | 1432.915  | 0.051    | 2717.300   | 0.184    | 1.143    | 0.133   | 3.222    |
| STANDARD DEVIATION        | 17.185    | 0.227    | 37.854    | 0.226    | 52.128     | 0.429    | 1.069    | 0.365   | 1.795    |

| ELEMENT                   | Hg (ppb)  |
|---------------------------|-----------|
| SUM OF SQUARED DEVIATIONS | 49522.302 |
| MEAN SQUARED VARIATION    | 1125.507  |
| STANDARD DEVIATION        | 33.549    |

| HYPOGYMNIA PHYSODES       |           |          |            |           |             |             |            |               |
|---------------------------|-----------|----------|------------|-----------|-------------|-------------|------------|---------------|
| ELEMENT                   | N (%)     | S (%)    | Al (ppm)   | As (ppm)  | B (ppm)     | Ba (ppm)    | Be (ppm)   | Ca (ppm)      |
| SUM OF SQUARED DEVIATIONS | 0.160     | 0.002    | 679702.947 | 1.984     | 5.043       | 1254.336    | 0.002      | 615471347.042 |
| MEAN SQUARED VARIATION    | 0.002     | 0.000    | 8603.835   | 0.025     | 0.064       | 15.878      | 0.000      | 7790776.545   |
| STANDARD DEVIATION        | 0.045     | 0.005    | 92.757     | 0.158     | 0.253       | 3.985       | 0.005      | 2791.196      |
|                           |           |          |            |           |             |             |            |               |
| ELEMENT                   | Cd (ppm)  | Co (ppm) | Cr (ppm)   | Cu (ppm)  | Fe (ppm)    | K (ppm)     | Li (ppm)   | Mg (ppm)      |
| SUM OF SQUARED DEVIATIONS | 1.194     | 0.207    | 4.493      | 144.510   | 1370653.835 | 2204291.055 | 0.438      | 349730.775    |
| MEAN SQUARED VARIATION    | 0.015     | 0.003    | 0.057      | 1.829     | 17350.049   | 27902.418   | 0.006      | 4426.972      |
| STANDARD DEVIATION        | 0.123     | 0.051    | 0.238      | 1.352     | 131.720     | 167.040     | 0.074      | 66.535        |
|                           |           |          |            |           |             |             |            |               |
| ELEMENT                   | Mn (ppm)  | Mo (ppm) | Na (ppm)   | Ni (ppm)  | P (ppm)     | Pb (ppm)    | Si (ppm)   | Sr (ppm)      |
| SUM OF SQUARED DEVIATIONS | 39782.237 | 0.423    | 1301.266   | 4.493     | 486855.809  | 22.558      | 359597.609 | 1698.899      |
| MEAN SQUARED VARIATION    | 503.573   | 0.005    | 16.472     | 0.057     | 6162.732    | 0.286       | 4551.868   | 21.505        |
| STANDARD DEVIATION        | 22.440    | 0.073    | 4.059      | 0.238     | 78.503      | 0.534       | 67.468     | 4.637         |
|                           |           |          |            |           |             |             |            |               |
| ELEMENT                   | Ti (ppm)  | V (ppm)  | Zn (ppm)   | Hg (ppb)  |             |             |            |               |
| SUM OF SQUARED DEVIATIONS | 183.130   | 46.157   | 2718.825   | 14757.223 |             |             |            |               |
| MEAN SQUARED VARIATION    | 2.318     | 0.584    | 34.416     | 186.800   |             |             |            |               |
| STANDARD DEVIATION        | 1 523     | 0 764    | 5,866      | 13.667    |             |             |            |               |

#### Table V-3. Field Replicate Variation of Hypogymnia physodes lichen.

## Apportionment Of Variance Analysis Northeastern Alberta Lichen Data Laboratory Replicates

## VI. LABORATORY REPLICATE VARIATION

Presented in Tables VI-1, VI-2, and VI-3 are the variances in laboratory replication. For each element, the Sums of Squared Deviations, the Mean Squared Deviation (variance), and Standard Deviation. The Standard Deviation is a measure of the precision of the laboratory measurements.

#### Table VI-1. Laboratory Replicate Variation of Cladina mitis lichen.

Cladina mitis

| ELEMENT                | N%    | S%    | AI (ppm)  | As (ppm) | B (ppm) | Ba (ppm) | Be (ppm) | Ca (ppm) | Cd (ppm) |
|------------------------|-------|-------|-----------|----------|---------|----------|----------|----------|----------|
| SUM OF SQUARED         |       |       |           |          |         |          |          |          |          |
| DEVIATIONS             | 0.029 | 0.000 | 27470.561 | 0.012    | 4.476   | 0.519    | 0.000    | 4421.640 | 0.271    |
| MEAN SQUARED VARIATION | 0.001 | 0.000 | 722.910   | 0.000    | 0.118   | 0.014    | 0.000    | 116.359  | 0.007    |
| STANDARD DEVIATION     | 0.036 | 0.003 | 26.887    | 0.018    | 0.343   | 0.117    | 0.001    | 10.787   | 0.085    |

| ELEMENT                | Co (ppm) | Cr (ppm) | Cu (ppm) | Fe (ppm)  | K (ppm)   | Li (ppm) | Mg (ppm) | Mn (ppm) | Mo (ppm) |
|------------------------|----------|----------|----------|-----------|-----------|----------|----------|----------|----------|
| SUM OF SQUARED         |          |          |          |           |           |          |          |          |          |
| DEVIATIONS             | 0.001    | 0.348    | 0.142    | 15002.480 | 14197.008 | 0.010    | 1207.181 | 34.104   | 0.012    |
| MEAN SQUARED VARIATION | 0.000    | 0.009    | 0.004    | 394.802   | 373.605   | 0.000    | 31.768   | 0.897    | 0.000    |
| STANDARD DEVIATION     | 0.006    | 0.096    | 0.061    | 19.870    | 19.329    | 0.016    | 5.636    | 0.947    | 0.018    |

| ELEMENT                | Na (ppm) | Ni (ppm) | P (ppm)  | Pb (ppm) | Si (ppm)  | Sr (ppm) | Ti (ppm) | V (ppm) | Zn (ppm) |
|------------------------|----------|----------|----------|----------|-----------|----------|----------|---------|----------|
| SUM OF SQUARED         |          |          |          |          |           |          |          |         |          |
| DEVIATIONS             | 23.215   | 1.684    | 1506.634 | 0.085    | 34731.065 | 0.052    | 4.139    | 0.296   | 3.445    |
| MEAN SQUARED VARIATION | 0.611    | 0.044    | 39.648   | 0.002    | 913.975   | 0.001    | 0.109    | 0.008   | 0.091    |
| STANDARD DEVIATION     | 0.782    | 0.211    | 6.297    | 0.047    | 30.232    | 0.037    | 0.330    | 0.088   | 0.301    |

| ELEMENT                   | Hg (ppb) |
|---------------------------|----------|
| SUM OF SQUARED DEVIATIONS | 9.615    |
| MEAN SQUARED VARIATION    | 0.874    |
| STANDARD DEVIATION        | 0.935    |

### Table VI-2. Laboratory Replicate Variation of Evernia mesomorpha lichen.

| Evernia mesomorpha     |          |          |            |          |          |           |            |            |  |  |
|------------------------|----------|----------|------------|----------|----------|-----------|------------|------------|--|--|
| ELEMENT                | N%       | S%       | Al (ppm)   | As (ppm) | B (ppm)  | Ba (ppm)  | Be (ppm)   | Ca (ppm)   |  |  |
| SUM OF SQUARED         |          |          |            |          |          |           |            |            |  |  |
| DEVIATIONS             | 0.001    | 0.000    | 116885.007 | 0.745    | 31.764   | 1.496     | 0.002      | 116210.329 |  |  |
| MEAN SQUARED VARIATION | 0.000    | 0.000    | 6493.612   | 0.041    | 1.765    | 0.083     | 0.000      | 6456.129   |  |  |
| STANDARD DEVIATION     | 0.016    | 0.003    | 80.583     | 0.203    | 1.328    | 0.288     | 0.010      | 80.350     |  |  |
|                        |          |          |            |          |          |           |            |            |  |  |
|                        |          |          |            |          | Fe       |           |            |            |  |  |
| ELEMENT                | Cd (ppm) | Co (ppm) | Cr (ppm)   | Cu (ppm) | (ppm)    | K (ppm)   | Li (ppm)   | Mg (ppm)   |  |  |
| SUM OF SQUARED         |          |          |            |          |          |           |            |            |  |  |
| DEVIATIONS             | 0.033    | 0.065    | 0.612      | 0.144    | 8538.242 | 14342.152 | 0.106      | 1827.172   |  |  |
| MEAN SQUARED VARIATION | 0.002    | 0.004    | 0.034      | 0.008    | 474.347  | 796.786   | 0.006      | 101.510    |  |  |
| STANDARD DEVIATION     | 0.043    | 0.060    | 0.184      | 0.089    | 21.780   | 28.227    | 0.077      | 10.075     |  |  |
|                        |          |          |            |          |          |           |            |            |  |  |
| ELEMENT                | Mn (ppm) | Mo (ppm) | Na (ppm)   | Ni (ppm) | P (ppm)  | Pb (ppm)  | Si (ppm)   | Sr (ppm)   |  |  |
| SUM OF SQUARED         |          |          |            |          |          |           |            |            |  |  |
| DEVIATIONS             | 2.834    | 0.067    | 52.249     | 0.688    | 931.660  | 3.925     | 219620.194 | 0.130      |  |  |
| MEAN SQUARED VARIATION | 0.157    | 0.004    | 2.903      | 0.038    | 51.759   | 0.218     | 12201.122  | 0.007      |  |  |
| STANDARD DEVIATION     | 0.397    | 0.061    | 1.704      | 0.196    | 7.194    | 0.467     | 110.459    | 0.085      |  |  |
|                        |          |          |            |          |          |           |            |            |  |  |
| ELEMENT                | Ti (ppm) | V (ppm)  | Zn (ppm)   | Hg (ppb) |          |           |            |            |  |  |
| SUM OF SQUARED         |          |          |            |          |          |           |            |            |  |  |
| DEVIATIONS             | 94.744   | 1.635    | 3.550      | 112.500  |          |           |            |            |  |  |
| MEAN SQUARED VARIATION | 5.264    | 0.091    | 0.197      | 22.500   |          |           |            |            |  |  |

STANDARD DEVIATION

2.294

0.301

0.444

4.743

#### Table VI-3. Laboratory Replicate Variation of Hypogymnia physodes lichen.

| Hypogymnia physodes    |          |          |            |            |            |          |           |              |          |
|------------------------|----------|----------|------------|------------|------------|----------|-----------|--------------|----------|
| ELEMENT                | N%       | S%       | AI (ppm)   | As (ppm)   | B (ppm)    | Ba (ppm) | Be (ppm)  | Ca (ppm)     | Cd (ppm) |
| SUM OF SQUARED         |          |          |            |            |            |          |           |              |          |
| DEVIATIONS             | 0.072    | 0.000    | 114267.568 | 0.385      | 25.648     | 67.951   | 0.000     | 42456029.408 | 0.017    |
| MEAN SQUARED VARIATION | 0.002    | 0.000    | 3174.099   | 0.011      | 0.712      | 1.888    | 0.000     | 1179334.150  | 0.000    |
| STANDARD DEVIATION     | 0.050    | 0.002    | 56.339     | 0.103      | 0.844      | 1.374    | 0.003     | 1085.972     | 0.022    |
|                        |          |          |            |            |            |          |           |              |          |
| ELEMENT                | Co (ppm) | Cr (ppm) | Cu (ppm)   | Fe (ppm)   | K (ppm)    | Li (ppm) | Mg (ppm)  | Mn (ppm)     | Mo (ppm) |
| SUM OF SQUARED         |          |          |            |            |            |          |           |              |          |
| DEVIATIONS             | 0.011    | 0.402    | 0.911      | 124191.741 | 92772.172  | 0.041    | 28098.907 | 3408.654     | 0.041    |
| MEAN SQUARED VARIATION | 0.000    | 0.011    | 0.025      | 3449.771   | 2577.005   | 0.001    | 780.525   | 94.685       | 0.001    |
| STANDARD DEVIATION     | 0.017    | 0.106    | 0.159      | 58.735     | 50.764     | 0.034    | 27.938    | 9.731        | 0.034    |
|                        |          |          |            |            |            |          |           |              |          |
| ELEMENT                | Na (ppm) | Ni (ppm) | P (ppm)    | Pb (ppm)   | Si (ppm)   | Sr (ppm) | Ti (ppm)  | V (ppm)      | Zn (ppm) |
| SUM OF SQUARED         |          |          |            |            |            |          |           |              |          |
| DEVIATIONS             | 35.438   | 0.571    | 3462.419   | 1.502      | 107643.340 | 3.449    | 41.258    | 3.697        | 96.910   |
| MEAN SQUARED VARIATION | 0.984    | 0.016    | 96.178     | 0.042      | 2990.093   | 0.096    | 1.146     | 0.103        | 2.692    |
| STANDARD DEVIATION     | 0.992    | 0.126    | 9.807      | 0.204      | 54.682     | 0.310    | 1.071     | 0.320        | 1.641    |
|                        |          |          |            |            |            |          |           |              |          |
|                        |          |          |            |            |            |          |           |              |          |

| ELEMENT                   | Hg (ppb) |
|---------------------------|----------|
| SUM OF SQUARED DEVIATIONS | 909.890  |
| MEAN SQUARED VARIATION    | 43.328   |
| STANDARD DEVIATION        | 6.582    |

## Apportionment Of Variance Analysis Northeastern Alberta Lichen Data Pollution Deposition Variation Among Sites

## **VII. POLLUTION DEPOSITION VARIATION AMONG SITES**

Presented in Tables VII-1, VII-2, and VII-3 are the apportioned variances for pollution deposition among sites for each of the detected elements. For each element, the overall mean, variance, and standard deviation are reported. Also reported are the Total Sums of Squares, the Sums of Squares Error (due to on-site variation), and Sums of Squares Sites, the variation of pollution deposition after accounting for on-site error.

In the accompanying Excel Workbook, AOSlichendata, the data are summarized by Direction from Mine and by Distance from Mine. Given are the means, variances, and standard deviations for each species. These summaries can be found on the Dep *Species* worksheet for each of the three species.

|                                |           |             |             |             |            |          |           |             | Cd          |
|--------------------------------|-----------|-------------|-------------|-------------|------------|----------|-----------|-------------|-------------|
| ELEMENT                        | N (%)     | S (%)       | Al (ppm)    | As (ppm)    | B (ppm)    | Ba (ppm) | Be (ppm)  | Ca (ppm)    | (ppm)       |
| MEAN                           | 0.517     | 0.057       | 420.624     | 0.829       | 2.439      | 5.911    | 0.042     | 1075.636    | 0.175       |
| VARIANCE                       | 0.008     | 0           | 197790.512  | 0.028       | 1.706      | 12.169   | 0         | 210548.168  | 0.084       |
| STANDARD DEVIATION             | 0.089     | 0.017       | 444.736     | 0.168       | 1.306      | 3.488    | 0.011     | 458.855     | 0.29        |
| SUM OF SQUARES TOTAL           | 0.627     | 0.022       | 15625450.48 | 2.237       | 134.738    | 961.377  | 0.01      | 16633305.27 | 6.634       |
| SUM OF SQUARES ERROR           | 0.144     | 0.003       | 75718.302   | 0.074       | 11.913     | 78.733   | 0         | 459335.658  | 3.299       |
| SUM OF SQUARES SITES           | 0.483     | 0.02        | 15549732.18 | 2.164       | 122.826    | 882.644  | 0.01      | 16173969.61 | 3.335       |
| MEAN SQUARE<br>VARIATION SITES | 0.012     | 0.001       | 388743.304  | 0.054       | 3.071      | 22.066   | 0.000     | 404349.240  | 0.083       |
|                                |           |             |             |             |            |          |           |             |             |
| ELEMENT                        | Co (ppm)  | Cr<br>(ppm) | Cu (ppm)    | Fe (ppm)    | K (ppm)    | Li (ppm) | Mg (ppm)  | Mn (ppm)    | Mo<br>(ppm) |
| MEAN                           | 0.241     | 0.979       | 1.313       | 433.995     | 1491.368   | 0.512    | 365.759   | 69.087      | 0.323       |
| VARIANCE                       | 0         | 0.32        | 0.702       | 207309.513  | 80249.707  | 0.064    | 32883.751 | 1167.002    | 0.026       |
| STANDARD DEVIATION             | 0.007     | 0.566       | 0.838       | 455.313     | 283.284    | 0.252    | 181.339   | 34.161      | 0.162       |
| SUM OF SQUARES TOTAL           | 0.004     | 25.271      | 55.491      | 16377451.55 | 6339726.82 | 5.021    | 2597816.3 | 92193.154   | 2.085       |
| SUM OF SQUARES ERROR           | 0.002     | 1.48        | 18.141      | 62758.066   | 777728.282 | 0.05     | 31667.856 | 9829.668    | 0.06        |
| SUM OF SQUARES SITES           | 0.002     | 23.791      | 37.349      | 16314693.49 | 5561998.53 | 4.97     | 2566148.5 | 82363.486   | 2.025       |
| MEAN SQUARE<br>VARIATION SITES | 0.000     | 0.595       | 0.934       | 407867.337  | 139049.963 | 0.124    | 64153.711 | 2059.087    | 0.051       |
|                                |           | -           |             |             |            |          |           |             |             |
| ELEMENT                        | Na (ppm)  | Ni (ppm)    | P (ppm)     | Pb (ppm)    | Si (ppm)   | Sr (ppm) | Ti (ppm)  | V (ppm)     | Zn<br>(ppm) |
| MEAN                           | 24.47     | 1.001       | 546.051     | 1.746       | 502.766    | 3.515    | 5.608     | 1.462       | 14.68       |
| VARIANCE                       | 146.209   | 0.352       | 14311.193   | 0.025       | 62043.694  | 11.378   | 7.494     | 1.202       | 12.08       |
| STANDARD DEVIATION             | 12.092    | 0.594       | 119.629     | 0.158       | 249.086    | 3.373    | 2.738     | 1.096       | 3.476       |
| SUM OF SQUARES TOTAL           | 11550.498 | 27.832      | 1130584.242 | 1.965       | 4901451.85 | 898.852  | 592.049   | 94.919      | 954.317     |
| SUM OF SQUARES ERROR           | 310.065   | 3.04        | 137783.849  | 0.295       | 106658.034 | 6.95     | 18.085    | 1.219       | 128.034     |
| SUM OF SQUARES SITES           | 11240.434 | 24.792      | 992800.393  | 1.67        | 4794793.82 | 891.902  | 573.964   | 93.699      | 826.283     |
| MEAN SQUARE<br>VARIATION SITES | 281.011   | 0.620       | 24820.010   | 0.042       | 119869.845 | 22.298   | 14.349    | 2.342       | 20.657      |

 Table VII-1. Pollution Deposition Variation Among Sites of Cladina mitis lichen.

Г

Statistical Report by Pacific Analytics, L.L.C.

|                                |           |             |             |             |            |          |           |              | Cd          |
|--------------------------------|-----------|-------------|-------------|-------------|------------|----------|-----------|--------------|-------------|
| ELEMENT                        | N (%)     | S (%)       | Al (ppm)    | As (ppm)    | B (ppm)    | Ba (ppm) | Be (ppm)  | Ca (ppm)     | (ppm)       |
| MEAN                           | 0.963     | 0.115       | 918.582     | 1.013       | 4.512      | 6.755    | 0.05      | 3995.734     | 0.215       |
| VARIANCE                       | 0.085     | 0.002       | 709633.206  | 0.148       | 3.813      | 7.928    | 0         | 43116808.63  | 0.012       |
| STANDARD DEVIATION             | 0.291     | 0.042       | 842.397     | 0.384       | 1.953      | 2.816    | 0.021     | 6566.339     | 0.112       |
| SUM OF SQUARES TOTAL           | 3.727     | 0.078       | 31223861.07 | 6.495       | 167.751    | 348.853  | 0.019     | 1897139580   | 0.548       |
| SUM OF SQUARED ERROR           | 0.123     | 0.003       | 167281.824  | 0.244       | 3.263      | 4.154    | 0         | 9210069.425  | 0.145       |
| SUM OF SQUARES SITES           | 3.603     | 0.075       | 31056579.25 | 6.251       | 164.488    | 344.699  | 0.018     | 1887929510   | 0.402       |
| MEAN SQUARE<br>VARIATION SITES | 0.129     | 0.003       | 1109163.545 | 0.223       | 5.875      | 12.311   | 0.001     | 67426053.942 | 0.014       |
|                                | 1         |             |             |             |            |          |           |              |             |
| ELEMENT                        | Co (ppm)  | Cr<br>(ppm) | Cu (ppm)    | Fe (ppm)    | K (ppm)    | Li (ppm) | Mg (ppm)  | Mn (ppm)     | Mo<br>(ppm) |
| MEAN                           | 0.241     | 1.942       | 2.429       | 934.844     | 2118.333   | 0.885    | 337.035   | 38.99        | 0.669       |
| VARIANCE                       | 0         | 1.037       | 1.974       | 721508.557  | 185048.122 | 0.582    | 19367.817 | 221.461      | 0.203       |
| STANDARD DEVIATION             | 0.004     | 1.018       | 1.405       | 849.417     | 430.172    | 0.763    | 139.168   | 14.882       | 0.45        |
| SUM OF SQUARES TOTAL           | 0.001     | 45.641      | 86.856      | 31746376.49 | 8142117.38 | 25.589   | 852183.95 | 9744.303     | 8.913       |
| SUM OF SQUARED ERROR           | 0         | 0.98        | 27.373      | 229941.202  | 589556.305 | 0.184    | 18249.124 | 1468.494     | 0.131       |
| SUM OF SQUARES SITES           | 0.001     | 44.66       | 59.483      | 31516435.29 | 7552561.08 | 25.405   | 833934.83 | 8275.809     | 8.782       |
| MEAN SQUARE<br>VARIATION SITES | 0.000     | 1.595       | 2.124       | 1125586.975 | 269734.324 | 0.907    | 29783.387 | 295.565      | 0.314       |
|                                |           |             |             |             |            |          |           |              |             |
| ELEMENT                        | Na (ppm)  | Ni (ppm)    | P (ppm)     | Pb (ppm)    | Si (ppm)   | Sr (ppm) | Ti (ppm)  | V (ppm)      | Zn<br>(ppm) |
| MEAN                           | 39.395    | 2.211       | 557.716     | 2.208       | 713.469    | 5.448    | 13.276    | 4.371        | 29.972      |
| VARIANCE                       | 650.921   | 1.36        | 19683.511   | 0.318       | 44530.337  | 23.288   | 26.185    | 9.837        | 38.492      |
| STANDARD DEVIATION             | 25.513    | 1.166       | 140.298     | 0.564       | 211.022    | 4.826    | 5.117     | 3.136        | 6.204       |
| SUM OF SQUARES TOTAL           | 28640.527 | 59.831      | 866074.463  | 13.978      | 1959334.83 | 1024.655 | 1152.141  | 432.829      | 1693.638    |
| SUM OF SQUARED ERROR           | 12993.799 | 2.263       | 63048.264   | 2.249       | 119561.184 | 8.091    | 50.299    | 5.859        | 141.767     |
| SUM OF SQUARES SITES           | 15646.729 | 57.568      | 803026.199  | 11.729      | 1839773.64 | 1016.563 | 1101.842  | 426.969      | 1551.871    |
| MEAN SQUARE<br>VARIATION SITES | 558.812   | 2.056       | 28679.507   | 0.419       | 65706.202  | 36.306   | 39.352    | 15.249       | 55.424      |

 Table VII-2.
 Pollution Deposition Variation Among Sites of Evernia mesomorpha lichen.

Statistical Report by Pacific Analytics, L.L.C.

| ELEMENT              | N (%) | S (%) | AI (ppm)    | As (ppm) | B (ppm) | Ba (ppm)  | Be (ppm) | Ca (ppm)      |
|----------------------|-------|-------|-------------|----------|---------|-----------|----------|---------------|
| MEAN                 | 0.749 | 0.095 | 1049.643    | 1.573    | 4.206   | 29.559    | 0.069    | 18126.885     |
| VARIANCE             | 0.02  | 0.001 | 718209.66   | 0.746    | 4.266   | 151.626   | 0.002    | 143708200     |
| STANDARD DEVIATION   | 0.142 | 0.026 | 847.473     | 0.864    | 2.065   | 12.314    | 0.049    | 11987.836     |
| SUM OF SQUARES TOTAL | 1.601 | 0.053 | 56738563.18 | 58.956   | 337.008 | 11978.482 | 0.187    | 11352947801   |
| SUM OF SQUARED ERROR | 0.16  | 0.002 | 679702.947  | 1.984    | 5.043   | 1254.336  | 0.002    | 615471347     |
| SUM OF SQUARED SITES | 1.441 | 0.051 | 56058860.23 | 56.973   | 331.966 | 10724.147 | 0.185    | 10737476454   |
| MEAN SQUARE          |       |       |             |          |         |           |          |               |
| VARIATION SITES      | 0.034 | 0.001 | 1303694.424 | 1.325    | 7.720   | 249.399   | 0.004    | 249708754.751 |

Table VII-3. Pollution Deposition Variation Among Sites of Hypogymnia physodes lichen.

|                      |          | Co    |          |          |             |            |          |             |
|----------------------|----------|-------|----------|----------|-------------|------------|----------|-------------|
| ELEMENT              | Cd (ppm) | (ppm) | Cr (ppm) | Cu (ppm) | Fe (ppm)    | K (ppm)    | Li (ppm) | Mg (ppm)    |
| MEAN                 | 0.425    | 0.326 | 2.27     | 4.33     | 1383.42     | 2661.98    | 0.788    | 857.21      |
| VARIANCE             | 0.033    | 0.036 | 1.835    | 13.362   | 1367652.29  | 277409.578 | 0.395    | 183435.969  |
| STANDARD DEVIATION   | 0.181    | 0.189 | 1.354    | 3.655    | 1169.467    | 526.697    | 0.628    | 428.294     |
| SUM OF SQUARES TOTAL | 2.583    | 2.823 | 144.926  | 1055.581 | 108044531   | 21915356.6 | 31.178   | 14491441.59 |
| SUM OF SQUARED ERROR | 1.194    | 0.207 | 4.493    | 144.51   | 1370653.84  | 2204291.06 | 0.438    | 349730.775  |
| SUM OF SQUARED SITES | 1.389    | 2.616 | 140.433  | 911.072  | 106673877   | 19711065.6 | 30.74    | 14141710.81 |
| MEAN SQUARE          |          |       |          |          |             |            |          |             |
| VARIATION SITES      | 0.032    | 0.061 | 3.266    | 21.188   | 2480787.830 | 458396.874 | 0.715    | 328876.996  |

|                      |           | Мо     |           |          |            |          |            |           |
|----------------------|-----------|--------|-----------|----------|------------|----------|------------|-----------|
| ELEMENT              | Mn (ppm)  | (ppm)  | Na (ppm)  | Ni (ppm) | P (ppm)    | Pb (ppm) | Si (ppm)   | Sr (ppm)  |
| MEAN                 | 215.74    | 0.694  | 37.572    | 3.785    | 736.049    | 4.699    | 766.064    | 24.4      |
| VARIANCE             | 16062.902 | 0.194  | 957.101   | 5.559    | 55574.897  | 1.664    | 61852.723  | 372.387   |
| STANDARD DEVIATION   | 126.74    | 0.44   | 30.937    | 2.358    | 235.743    | 1.29     | 248.702    | 19.297    |
| SUM OF SQUARES TOTAL | 1268969.2 | 15.287 | 75610.968 | 439.193  | 4390416.87 | 131.417  | 4886365.1  | 29418.541 |
| SUM OF SQUARED ERROR | 39782.237 | 0.423  | 1301.266  | 4.493    | 486855.809 | 22.558   | 359597.61  | 1698.899  |
| SUM OF SQUARED SITES | 1229187   | 14.864 | 74309.702 | 434.7    | 3903561.06 | 108.859  | 4526767.5  | 27719.643 |
| MEAN SQUARE          |           |        |           |          |            |          |            |           |
| VARIATION SITES      | 28585.744 | 0.346  | 1728.133  | 10.109   | 90780.490  | 2.532    | 105273.664 | 644.643   |

## Statistical Report by Pacific Analytics, L.L.C.

| ELEMENT              | Ti (ppm) | V (ppm) | Zn (ppm)  |
|----------------------|----------|---------|-----------|
| MEAN                 | 15.326   | 6.027   | 58.848    |
| VARIANCE             | 42.441   | 11.413  | 161.790   |
| STANDARD DEVIATION   | 6.515    | 3.378   | 12.720    |
| SUM OF SQUARES TOTAL | 3352.815 | 901.626 | 12781.404 |
| SUM OF SQUARED ERROR | 183.130  | 46.157  | 2718.825  |
| SUM OF SQUARED SITES | 3169.685 | 855.468 | 10062.579 |
| MEAN SQUARE          |          |         |           |
| VARIATION SITES      | 73.714   | 19.895  | 234.013   |

|                             | CLAMIT   | EVEMES     | НҮРРНҮ    |
|-----------------------------|----------|------------|-----------|
| ELEMENT                     | Hg (ppb) | Hg (ppb)   | Hg (ppb)  |
| MEAN                        | 13.145   | 106.209    | 91.611    |
| VARIANCE                    | 49.674   | 2950.284   | 534.163   |
| STANDARD DEVIATION          | 7.048    | 54.317     | 23.112    |
| SUM OF SQUARES TOTAL        | 3924.278 | 129812.516 | 42198.860 |
| SUM OF SQUARED ERROR        | 1284.928 | 49522.302  | 14757.223 |
| SUM OF SQUARED SITES        | 2639.350 | 80290.214  | 27441.637 |
| MEAN SQUARE VARIATION SITES | 65.984   | 2867.508   | 638.178   |

### Cladina mitis

|                        |          |        |          | As       |          | Ва       | Be      | Ca       | Cd       |
|------------------------|----------|--------|----------|----------|----------|----------|---------|----------|----------|
| ELEMENT                | N (%)    | S (%)  | AI (ppm) | (ppm)    | B (ppm)  | (ppm)    | (ppm)   | (ppm)    | (ppm)    |
| MEAN SQUARED VARIATION |          |        |          |          |          |          |         |          |          |
| FIELD                  | 0.002    | 0.000  | 958.460  | 0.001    | 0.151    | 0.997    | 0.000   | 5814.375 | 0.042    |
| MEAN SQUARE VARIATION  |          |        |          |          |          |          |         |          |          |
| SITES                  | 0.012075 | 0.0005 | 388743.3 | 0.0541   | 3.07065  | 22.0661  | 0.00025 | 404349.2 | 0.083375 |
| MEAN SQUARED VARIATION |          | 7.64E- |          |          |          |          | 8.42E-  |          |          |
| LAB                    | 0.001278 | 06     | 722.9095 | 0.000311 | 0.117789 | 0.013656 | 07      | 116.3589 | 0.007141 |

|                        | Со      |          | Cu       | Fe       |          |          | Mg       | Mn       | Мо       |
|------------------------|---------|----------|----------|----------|----------|----------|----------|----------|----------|
| ELEMENT                | (ppm)   | Cr (ppm) | (ppm)    | (ppm)    | K (ppm)  | Li (ppm) | (ppm)    | (ppm)    | (ppm)    |
| MEAN SQUARED VARIATION |         |          |          |          |          |          |          |          |          |
| FIELD                  | 0.000   | 0.019    | 0.230    | 794.406  | 9844.662 | 0.001    | 400.859  | 124.426  | 0.001    |
| MEAN SQUARE VARIATION  |         |          |          |          |          |          |          |          |          |
| SITES                  | 0.00005 | 0.594775 | 0.933725 | 407867.3 | 139050   | 0.12425  | 64153.71 | 2059.087 | 0.050625 |
| MEAN SQUARED VARIATION | 3.71E-  |          |          |          |          |          |          |          |          |
| LAB                    | 05      | 0.009147 | 0.003736 | 394.8021 | 373.6055 | 0.000266 | 31.76792 | 0.897484 | 0.000311 |

|                        | Na       |          |          | Pb       |          |          | Ti      |          | Zn       |
|------------------------|----------|----------|----------|----------|----------|----------|---------|----------|----------|
| ELEMENT                | (ppm)    | Ni (ppm) | P (ppm)  | (ppm)    | Si (ppm) | Sr (ppm) | (ppm)   | V (ppm)  | (ppm)    |
| MEAN SQUARED VARIATION |          |          |          |          |          |          |         |          |          |
| FIELD                  | 3.925    | 0.038    | 1744.099 | 0.004    | 1350.102 | 0.088    | 0.229   | 0.015    | 1.621    |
| MEAN SQUARE VARIATION  |          |          |          |          |          |          |         |          |          |
| SITES                  | 281.0109 | 0.6198   | 24820.01 | 0.04175  | 119869.8 | 22.29755 | 14.3491 | 2.342475 | 20.65708 |
| MEAN SQUARED VARIATION |          |          |          |          |          |          |         |          |          |
| LAB                    | 0.610918 | 0.044328 | 39.64826 | 0.002244 | 913.9754 | 0.001374 | 0.10891 | 0.007782 | 0.09067  |

#### Evernia mesomorpha

|                        | NI (0/ ) | <b>C</b> (0/) | Al (nnm)    | A.o. (nnm)  | D (nnm)     | Ba     | Be        | Co (nnm)   |      | Cd    |    |
|------------------------|----------|---------------|-------------|-------------|-------------|--------|-----------|------------|------|-------|----|
|                        | N (%)    | 5(%)          | AI (ppm)    | AS (ppm)    | в (ppm)     | (ppm)  | (ppm)     | Ca (ppm)   | )    | (ppm) | _  |
| MEAN SQUARED VARIATION |          |               |             |             |             |        |           |            |      |       |    |
| FIELD                  | 0.003    | 0.000         | 3801.860    | 0.006       | 6 0.074     | 0.094  | 0.000     | 209319.7   | 60   | 0.003 |    |
| MEAN SQUARE VARIATION  |          |               |             |             |             |        |           |            |      |       |    |
| SITES                  | 0.129    | 0.003         | 1109163.545 | 0.223       | 5.875       | 12.311 | 0.001     | 67426053.9 | 42   | 0.014 |    |
| MEAN SQUARED VARIATION |          |               |             |             |             |        |           |            |      |       |    |
| LAB                    | 0.000    | 0.000         | 6493.612    | 0.041       | 1.765       | 0.083  | 0.000     | 6456.1     | 29   | 0.002 |    |
|                        |          |               |             |             |             |        |           |            |      |       |    |
|                        | Со       | Cr            |             |             |             | Li     |           |            |      | Мо    |    |
| ELEMENT                | (ppm)    | (ppm)         | Cu (ppm)    | Fe (ppm)    | K (ppm)     | (ppm)  | Mg (pp    | m) Mn (pp  | om)  | (ppm) | )  |
| MEAN SQUARED VARIATION |          |               |             |             |             |        |           |            |      |       |    |
| FIELD                  | 0.000    | 0.022         | 0.622       | 5225.936    | 13399.00    | 0.00   | 4 414.7   | 753 33     | .375 | 0.00  | 13 |
| MEAN SQUARE VARIATION  |          |               |             |             |             |        |           |            |      |       |    |
| SITES                  | 0.000    | 1.595         | 2.124       | 1125586.975 | 5 269734.32 | .90    | 7 29783.3 | 387 295    | .565 | 0.31  | 4  |
| MEAN SQUARED VARIATION |          |               |             |             |             |        |           |            |      |       |    |
| LAB                    | 0.004    | 0.034         | 0.008       | 474.347     | 796.78      | 6 0.00 | 6 101.5   | 510 0      | .157 | 0.00  | 14 |
|                        |          |               |             |             |             |        |           |            |      |       |    |
|                        | Na       | Ni            |             |             |             | Sr     | Ti        |            | Z    | 'n    |    |
| ELEMENT                | (ppm)    | (ppm)         | P (ppm)     | Pb (ppm)    | Si (ppm)    | (ppm)  | (ppm)     | V (ppm)    | (p   | om)   |    |
| MEAN SQUARED VARIATION |          |               |             |             |             |        |           |            |      |       |    |
| FIELD                  | 295.314  | 0.051         | 1432.915    | 0.051       | 2717.300    | 0.184  | 1.143     | 0.133      | 3    | 3.222 |    |
| MEAN SQUARE VARIATION  |          |               |             |             |             |        |           |            |      |       |    |
| SITES                  | 558.812  | 2.056         | 28679.507   | 0.419       | 65706.202   | 36.306 | 39.352    | 15.249     | 55   | 5.424 |    |
| MEAN SQUARED VARIATION |          |               |             |             |             |        |           |            |      |       |    |
| LAB                    | 2.903    | 0.038         | 51.759      | 0.218       | 12201.122   | 0.007  | 5.264     | 0.091      | C    | ).197 |    |

## Hypogymnia physodes

| ELEMENT                | N (%) | S (%) | AI (ppm)    | As (ppm) | B (ppm) | Ba<br>(ppm) | Be (ppm) | Ca (ppm)      | Cd<br>(ppm) |
|------------------------|-------|-------|-------------|----------|---------|-------------|----------|---------------|-------------|
| MEAN SQUARED VARIATION |       |       |             |          |         |             |          |               |             |
| FIELD                  | 0.002 | 0.000 | 8603.835    | 0.025    | 0.064   | 15.878      | 0.000    | 7790776.545   | 0.015       |
| MEAN SQUARE VARIATION  |       |       |             |          |         |             |          |               |             |
| SITES                  | 0.034 | 0.001 | 1303694.424 | 1.325    | 7.720   | 249.399     | 0.004    | 249708754.751 | 0.032       |
| MEAN SQUARED VARIATION |       |       |             |          |         |             |          |               |             |
| LAB                    | 0.002 | 0.000 | 3174.099    | 0.011    | 0.712   | 1.888       | 0.000    | 1179334.150   | 0.000       |

|                        | Со    | Cr    |          |             |            | Li    |            |           | Мо    |
|------------------------|-------|-------|----------|-------------|------------|-------|------------|-----------|-------|
| ELEMENT                | (ppm) | (ppm) | Cu (ppm) | Fe (ppm)    | K (ppm)    | (ppm) | Mg (ppm)   | Mn (ppm)  | (ppm) |
| MEAN SQUARED VARIATION |       |       |          |             |            |       |            |           |       |
| FIELD                  | 0.003 | 0.057 | 1.829    | 17350.049   | 27902.418  | 0.006 | 4426.972   | 503.573   | 0.005 |
| MEAN SQUARE VARIATION  |       |       |          |             |            |       |            |           |       |
| SITES                  | 0.061 | 3.266 | 21.188   | 2480787.830 | 458396.874 | 0.715 | 328876.996 | 28585.744 | 0.346 |
| MEAN SQUARED VARIATION |       |       |          |             |            |       |            |           |       |
| LAB                    | 0.000 | 0.011 | 0.025    | 3449.771    | 2577.005   | 0.001 | 780.525    | 94.685    | 0.001 |

|                        | Na       | Ni     |           |          |            | Sr      |          |         | Zn      |
|------------------------|----------|--------|-----------|----------|------------|---------|----------|---------|---------|
| ELEMENT                | (ppm)    | (ppm)  | P (ppm)   | Pb (ppm) | Si (ppm)   | (ppm)   | Ti (ppm) | V (ppm) | (ppm)   |
| MEAN SQUARED VARIATION |          |        |           |          |            |         |          |         |         |
| FIELD                  | 16.472   | 0.057  | 6162.732  | 0.286    | 4551.868   | 21.505  | 2.318    | 0.584   | 34.416  |
| MEAN SQUARE VARIATION  |          |        |           |          |            |         |          |         |         |
| SITES                  | 1728.133 | 10.109 | 90780.490 | 2.532    | 105273.664 | 644.643 | 73.714   | 19.895  | 234.013 |
| MEAN SQUARED VARIATION |          |        |           |          |            |         |          |         |         |
| LAB                    | 0.984    | 0.016  | 96.178    | 0.042    | 2990.093   | 0.096   | 1.146    | 0.103   | 2.692   |

#### MERCURY (Hg)

| SPECIES                | CLAMIT   | EVEMES   | НҮРРНҮ   |
|------------------------|----------|----------|----------|
| ELEMENT                | Hg (ppb) | Hg (ppb) | Hg (ppb) |
| MEAN SQUARED VARIATION |          |          |          |
| FIELD                  | 16.265   | 1125.507 | 186.800  |
| MEAN SQUARE VARIATION  |          |          |          |
| SITES                  | 65.984   | 2867.508 | 638.178  |
| MEAN SQUARED VARIATION |          |          |          |
| LAB                    | 0.874    | 22.50    | 43.328   |